3DTopia-XL / models /primsdf.py
FrozenBurning
single view to 3D init release
81ecb2b
import torch
import trimesh
import torch.nn as nn
import torch.nn.functional as F
import logging
logger = logging.getLogger(__name__)
class PrimSDF(nn.Module):
def __init__(self, mesh_obj=None, f_sdf=None, geo_fn=None, asset_list=None, num_prims=1024, dim_feat=6, prim_shape=8, init_scale=0.05, sdf2alpha_var=0.005, auto_scale_init=True, init_sampling="uniform"):
super().__init__()
self.num_prims = num_prims
# 6 channels features - [SDF, R, G, B, roughness, metallic]
self.dim_feat = dim_feat
self.prim_shape = prim_shape
self.sdf_sampled_point = None
self.auto_scale_init = auto_scale_init
self.init_sampling = init_sampling
self.sdf2alpha_var = sdf2alpha_var
# assume the mesh is normalized to [-1, 1] cube
self.mesh_obj = mesh_obj
self.f_sdf = f_sdf
# N x (D x S^3 + 3(Global Translation) + 1(Global Scale))
self.srt_param = nn.parameter.Parameter(torch.zeros(self.num_prims, 1 + 3))
self.feat_param = nn.parameter.Parameter(torch.zeros(self.num_prims, self.dim_feat * (self.prim_shape ** 3)))
self.geo_start_index = 0
self.geo_end_index = self.geo_start_index + self.prim_shape ** 3 # non-inclusive
self.tex_start_index = self.geo_end_index
self.tex_end_index = self.tex_start_index + self.prim_shape ** 3 * 3 # non-inclusive
self.mat_start_index = self.tex_end_index
self.mat_end_index = self.mat_start_index + self.prim_shape ** 3 * 2
# sampled_point -> local grid
# local_grid - [prim_shape^3, 3]
xx = torch.linspace(-1, 1, self.prim_shape)
# two ways to sample xyz-axis aligned local grids: 1st is ij indexing
meshx, meshy, meshz = torch.meshgrid(xx, xx, xx, indexing='ij')
local_grid = torch.stack((meshz, meshy, meshx), dim=-1).reshape(-1, 3)
self.local_grid = local_grid
# second is xy indexing, equivalent to the first one
# meshx, meshy, meshz = torch.meshgrid(xx, xx, xx, indexing='xy')
# local_grid = torch.stack((meshz, meshx, meshy), dim=-1).reshape(-1, 3)
if self.f_sdf is not None and geo_fn is not None and asset_list is not None:
self._init_param(init_scale=init_scale, geo_fn=geo_fn, asset_list=asset_list, sampling=self.init_sampling)
@torch.no_grad()
def _init_param(self, init_scale, geo_fn, asset_list, sampling="uniform"):
pass
def forward(self, x):
# x - [bs, 3]
bs = x.shape[0]
weights = self.prim_weight(x)
output = self.grid_sample_feat(x, weights)
preds = {}
preds['sdf'] = output[:, 0:1]
# RGB
preds['tex'] = torch.clip(output[:, 1:4], min=0.0, max=1.0)
# roughness, metallic
preds['mat'] = torch.clip(output[:, 4:6], min=0.0, max=1.0)
return preds
def grid_sample_feat(self, x, weights):
# implementation of I_V -> trilinear grid sample of V_i
# x - [bs, 3]
# weights - [bs, n_prims]
bs = x.shape[0]
sampled_point = (x[:, None, :] - self.pos[None, ...]) / self.scale[None, ...]
mask = weights > 0
ind_bs, ind_nprim = torch.where(weights > 0)
masked_sampled_point = sampled_point[ind_bs, ind_nprim, :].reshape(ind_nprim.shape[0], 1, 1, 1, 3)
feat4sample = self.feat[ind_nprim, :].reshape(ind_nprim.shape[0], self.dim_feat, self.prim_shape, self.prim_shape, self.prim_shape)
sampled_feat = F.grid_sample(feat4sample, masked_sampled_point, mode='bilinear', padding_mode='zeros', align_corners=True).reshape(ind_nprim.shape[0], self.dim_feat)
weighted_sampled_feat = sampled_feat * weights[mask][:, None]
weighted_feat = torch.zeros(bs, self.dim_feat).to(x)
weighted_feat.index_add_(0, ind_bs, weighted_sampled_feat)
# at inference time, fill in approximated SDF value for region not covered by prims
if not self.training:
# get mask for points not covered by prims
bs_mask = weights.sum(1) <= 0
# get nearest prim index
dist = torch.norm(x[bs_mask, None, :] - self.pos[None, ...], p=2, dim=-1)
_, min_dist_ind = dist.min(1)
nearest_prim_pos = self.pos[min_dist_ind, :]
nearest_prim_scale = self.scale[min_dist_ind, :]
# in each nearest prim, get nearest voxel points
candidate_nearest_pts = nearest_prim_pos[:, None, :] + nearest_prim_scale[..., None] * self.local_grid.to(x)[None, :]
pts_dist = torch.norm(x[bs_mask, None, :] - candidate_nearest_pts, p=2, dim=-1)
min_dist, min_dist_pts_ind = pts_dist.min(1)
# get the SDF value as a nearest valid SDF value
min_pts_sdf = self.feat_geo[min_dist_ind, min_dist_pts_ind]
# approximate SDF value with the same sign distance + L2 distance
approx_sdf = min_pts_sdf + min_dist * torch.sign(min_pts_sdf)
weighted_feat[bs_mask, 0:1] = approx_sdf[:, None]
return weighted_feat
def prim_weight(self, x):
# x - [bs, 3]
weights = F.relu(1 - torch.norm((x[:, None, :] - self.pos[None, ...]) / self.scale[None, ...], p = float('inf'), dim=-1))
# weight - [bs, N]
normalized_weights = weights / (torch.sum(weights, dim=-1, keepdim=True) + 1e-6)
return normalized_weights
def sdf2alpha(self, sdf):
return torch.exp(-(sdf / self.sdf2alpha_var) ** 2)
@property
def pos(self):
return self.srt_param[:, 1:4]
@property
def scale(self):
return self.srt_param[:, 0:1]
@property
def feat(self):
return self.feat_param
@property
def feat_geo(self):
return self.feat_param[:, self.geo_start_index:self.geo_end_index]
@property
def feat_tex(self):
return self.feat_param[:, self.tex_start_index:self.tex_end_index]
@property
def feat_mat(self):
return self.feat_param[:, self.mat_start_index:self.mat_end_index]