import torch import numpy as np import pymeshlab as pml from importlib.metadata import version PML_VER = version('pymeshlab') # the code assumes the latest 2023.12 version, but we can patch older versions if PML_VER.startswith('0.2'): # monkey patch for 0.2 (only the used functions in this file!) pml.MeshSet.meshing_decimation_quadric_edge_collapse = pml.MeshSet.simplification_quadric_edge_collapse_decimation pml.MeshSet.meshing_isotropic_explicit_remeshing = pml.MeshSet.remeshing_isotropic_explicit_remeshing pml.MeshSet.meshing_remove_unreferenced_vertices = pml.MeshSet.remove_unreferenced_vertices pml.MeshSet.meshing_merge_close_vertices = pml.MeshSet.merge_close_vertices pml.MeshSet.meshing_remove_duplicate_faces = pml.MeshSet.remove_duplicate_faces pml.MeshSet.meshing_remove_null_faces = pml.MeshSet.remove_zero_area_faces pml.MeshSet.meshing_remove_connected_component_by_diameter = pml.MeshSet.remove_isolated_pieces_wrt_diameter pml.MeshSet.meshing_remove_connected_component_by_face_number = pml.MeshSet.remove_isolated_pieces_wrt_face_num pml.MeshSet.meshing_repair_non_manifold_edges = pml.MeshSet.repair_non_manifold_edges_by_removing_faces pml.MeshSet.meshing_repair_non_manifold_vertices = pml.MeshSet.repair_non_manifold_vertices_by_splitting pml.PercentageValue = pml.Percentage pml.PureValue = float elif PML_VER.startswith('2022.2'): # monkey patch for 2022.2 pml.PercentageValue = pml.Percentage pml.PureValue = pml.AbsoluteValue def rotation_matrix(axis, angle_deg): angle_rad = np.radians(angle_deg) if axis == 'x': return np.array([[1, 0, 0], [0, np.cos(angle_rad), -np.sin(angle_rad)], [0, np.sin(angle_rad), np.cos(angle_rad)]]).astype(np.float32) elif axis == 'y': return np.array([[np.cos(angle_rad), 0, np.sin(angle_rad)], [0, 1, 0], [-np.sin(angle_rad), 0, np.cos(angle_rad)]]).astype(np.float32) elif axis == 'z': return np.array([[np.cos(angle_rad), -np.sin(angle_rad), 0], [np.sin(angle_rad), np.cos(angle_rad), 0], [0, 0, 1]]).astype(np.float32) else: raise ValueError("Axis must be 'x', 'y', or 'z'") def scale_to_unit_sphere(points): max_xyz, _ = points.max(0) min_xyz, _ = points.min(0) bb_centroid = (max_xyz + min_xyz) / 2. zero_mean_points = points - bb_centroid dist = np.linalg.norm(points, axis=1) normalized_points = zero_mean_points / np.max(dist) return normalized_points def scale_to_unit_cube(points): max_xyz, _ = points.max(0) min_xyz, _ = points.min(0) bb_centroid = (max_xyz + min_xyz) / 2. global_scale_max = (max_xyz - min_xyz).max() zero_mean_points = points - bb_centroid normalized_points = zero_mean_points * (1.8 / global_scale_max) return normalized_points def decimate_mesh( verts, faces, target=5e4, backend="pymeshlab", remesh=False, optimalplacement=True ): """ perform mesh decimation. Args:pml verts (np.ndarray): mesh vertices, float [N, 3] faces (np.ndarray): mesh faces, int [M, 3] target (int): targeted number of faces backend (str, optional): algorithm backend, can be "pymeshlab" or "pyfqmr". Defaults to "pymeshlab". remesh (bool, optional): whether to remesh after decimation. Defaults to False. optimalplacement (bool, optional): For flat mesh, use False to prevent spikes. Defaults to True. Returns: Tuple[np.ndarray]: vertices and faces after decimation. """ _ori_vert_shape = verts.shape _ori_face_shape = faces.shape if backend == "pyfqmr": import pyfqmr solver = pyfqmr.Simplify() solver.setMesh(verts, faces) solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False) verts, faces, normals = solver.getMesh() else: m = pml.Mesh(verts, faces) ms = pml.MeshSet() ms.add_mesh(m, "mesh") # will copy! # filters # ms.meshing_decimation_clustering(threshold=pml.PercentageValue(1)) ms.meshing_decimation_quadric_edge_collapse( targetfacenum=int(target), optimalplacement=optimalplacement ) if remesh: # ms.apply_coord_taubin_smoothing() ms.meshing_isotropic_explicit_remeshing( iterations=3, targetlen=pml.PercentageValue(1) ) # extract mesh m = ms.current_mesh() m.compact() verts = m.vertex_matrix() faces = m.face_matrix() print(f"[INFO] mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}") return verts, faces def clean_mesh( verts, faces, v_pct=1, min_f=64, min_d=20, repair=True, remesh=True, remesh_size=0.01, remesh_iters=3, ): """ perform mesh cleaning, including floater removal, non manifold repair, and remeshing. Args: verts (np.ndarray): mesh vertices, float [N, 3] faces (np.ndarray): mesh faces, int [M, 3] v_pct (int, optional): percentage threshold to merge close vertices. Defaults to 1. min_f (int, optional): maximal number of faces for isolated component to remove. Defaults to 64. min_d (int, optional): maximal diameter percentage of isolated component to remove. Defaults to 20. repair (bool, optional): whether to repair non-manifold faces (cannot gurantee). Defaults to True. remesh (bool, optional): whether to perform a remeshing after all cleaning. Defaults to True. remesh_size (float, optional): the targeted edge length for remeshing. Defaults to 0.01. remesh_iters (int, optional): the iterations of remeshing. Defaults to 3. Returns: Tuple[np.ndarray]: vertices and faces after decimation. """ # verts: [N, 3] # faces: [N, 3] _ori_vert_shape = verts.shape _ori_face_shape = faces.shape m = pml.Mesh(verts, faces) ms = pml.MeshSet() ms.add_mesh(m, "mesh") # will copy! # filters ms.meshing_remove_unreferenced_vertices() # verts not refed by any faces if v_pct > 0: ms.meshing_merge_close_vertices( threshold=pml.PercentageValue(v_pct) ) # 1/10000 of bounding box diagonal ms.meshing_remove_duplicate_faces() # faces defined by the same verts ms.meshing_remove_null_faces() # faces with area == 0 if min_d > 0: ms.meshing_remove_connected_component_by_diameter( mincomponentdiag=pml.PercentageValue(min_d) ) if min_f > 0: ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f) if repair: # ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True) ms.meshing_repair_non_manifold_edges(method=0) ms.meshing_repair_non_manifold_vertices(vertdispratio=0) if remesh: # ms.apply_coord_taubin_smoothing() ms.meshing_isotropic_explicit_remeshing( iterations=remesh_iters, targetlen=pml.PureValue(remesh_size) ) # extract mesh m = ms.current_mesh() m.compact() verts = m.vertex_matrix() faces = m.face_matrix() print(f"[INFO] mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}") return verts, faces @torch.no_grad() def compute_edge_to_face_mapping(faces): """ compute edge to face mapping. Args: faces (torch.Tensor): mesh faces, int [M, 3] Returns: torch.Tensor: indices to faces for each edge, long, [N, 2] """ # Get unique edges # Create all edges, packed by triangle all_edges = torch.cat(( torch.stack((faces[:, 0], faces[:, 1]), dim=-1), torch.stack((faces[:, 1], faces[:, 2]), dim=-1), torch.stack((faces[:, 2], faces[:, 0]), dim=-1), ), dim=-1).view(-1, 2) # Swap edge order so min index is always first order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) sorted_edges = torch.cat(( torch.gather(all_edges, 1, order), torch.gather(all_edges, 1, 1 - order) ), dim=-1) # Elliminate duplicates and return inverse mapping unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) tris = torch.arange(faces.shape[0]).repeat_interleave(3).cuda() tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() # Compute edge to face table mask0 = order[:,0] == 0 mask1 = order[:,0] == 1 tris_per_edge[idx_map[mask0], 0] = tris[mask0] tris_per_edge[idx_map[mask1], 1] = tris[mask1] return tris_per_edge