Spaces:
Sleeping
Sleeping
File size: 7,846 Bytes
a699001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import sys
import os
import os
import html
import glob
import uuid
import hashlib
import requests
from tqdm import tqdm
os.system("git clone https://github.com/FrozenBurning/SceneDreamer.git")
import torch
pretrained_model = dict(file_url='https://drive.google.com/uc?id=1IFu1vNrgF1EaRqPizyEgN_5Vt7Fyg0Mj',
alt_url='', file_size=330571863, file_md5='13b7ae859b28b37479ec84f1449d07fc7',
file_path='./scenedreamer_released.pt',)
def download_file(session, file_spec, use_alt_url=False, chunk_size=128, num_attempts=10):
file_path = file_spec['file_path']
if use_alt_url:
file_url = file_spec['alt_url']
else:
file_url = file_spec['file_url']
file_dir = os.path.dirname(file_path)
tmp_path = file_path + '.tmp.' + uuid.uuid4().hex
if file_dir:
os.makedirs(file_dir, exist_ok=True)
progress_bar = tqdm(total=file_spec['file_size'], unit='B', unit_scale=True)
for attempts_left in reversed(range(num_attempts)):
data_size = 0
progress_bar.reset()
try:
# Download.
data_md5 = hashlib.md5()
with session.get(file_url, stream=True) as res:
res.raise_for_status()
with open(tmp_path, 'wb') as f:
for chunk in res.iter_content(chunk_size=chunk_size<<10):
progress_bar.update(len(chunk))
f.write(chunk)
data_size += len(chunk)
data_md5.update(chunk)
# Validate.
if 'file_size' in file_spec and data_size != file_spec['file_size']:
raise IOError('Incorrect file size', file_path)
if 'file_md5' in file_spec and data_md5.hexdigest() != file_spec['file_md5']:
raise IOError('Incorrect file MD5', file_path)
break
except Exception as e:
# print(e)
# Last attempt => raise error.
if not attempts_left:
raise
# Handle Google Drive virus checker nag.
if data_size > 0 and data_size < 8192:
with open(tmp_path, 'rb') as f:
data = f.read()
links = [html.unescape(link) for link in data.decode('utf-8').split('"') if 'confirm=t' in link]
if len(links) == 1:
file_url = requests.compat.urljoin(file_url, links[0])
continue
progress_bar.close()
# Rename temp file to the correct name.
os.replace(tmp_path, file_path) # atomic
# Attempt to clean up any leftover temps.
for filename in glob.glob(file_path + '.tmp.*'):
try:
os.remove(filename)
except:
pass
print('Downloading SceneDreamer pretrained model...')
with requests.Session() as session:
try:
download_file(session, pretrained_model)
except:
print('Google Drive download failed.\n')
import os
import torch
import argparse
from imaginaire.config import Config
from imaginaire.utils.cudnn import init_cudnn
from imaginaire.utils.dataset import get_test_dataloader
from imaginaire.utils.distributed import init_dist
from imaginaire.utils.gpu_affinity import set_affinity
from imaginaire.utils.io import get_checkpoint as get_checkpoint
from imaginaire.utils.logging import init_logging
from imaginaire.utils.trainer import \
(get_model_optimizer_and_scheduler, set_random_seed)
import imaginaire.config
import gradio as gr
from PIL import Image
def parse_args():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--config', type=str, default='./configs/scenedreamer_inference.yaml'
help='Path to the training config file.')
parser.add_argument('--checkpoint', default='./scenedreamer_released.pt',
help='Checkpoint path.')
parser.add_argument('--output_dir', type=str, default='./test/',
help='Location to save the image outputs')
parser.add_argument('--seed', type=int, default=8888,
help='Random seed.')
args = parser.parse_args()
return args
args = parse_args()
set_random_seed(args.seed, by_rank=False)
cfg = Config(args.config)
# Initialize cudnn.
init_cudnn(cfg.cudnn.deterministic, cfg.cudnn.benchmark)
# Initialize data loaders and models.
net_G = get_model_optimizer_and_scheduler(cfg, seed=args.seed, generator_only=True)
if args.checkpoint == '':
raise NotImplementedError("No checkpoint is provided for inference!")
# Load checkpoint.
# trainer.load_checkpoint(cfg, args.checkpoint)
checkpoint = torch.load(args.checkpoint, map_location='cpu')
net_G.load_state_dict(checkpoint['net_G'])
# Do inference.
net_G = net_G.module
net_G.eval()
for name, param in net_G.named_parameters():
param.requires_grad = False
torch.cuda.empty_cache()
world_dir = os.path.join(args.output_dir)
os.makedirs(world_dir, exist_ok=True)
def get_bev(seed):
print('[PCGGenerator] Generating BEV scene representation...')
os.system('python terrain_generator.py --size {} --seed {} --outdir {}'.format(net_G.voxel.sample_size, seed, world_dir))
heightmap_path = os.path.join(world_dir, 'heightmap.png')
semantic_path = os.path.join(world_dir, 'semanticmap.png')
heightmap = Image.open(heightmap_path)
semantic = Image.open(semantic_path)
return semantic, heightmap
def get_video(seed, num_frames):
device = torch.device('cuda')
rng_cuda = torch.Generator(device=device)
rng_cuda = rng_cuda.manual_seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
net_G.voxel.next_world(device, world_dir, checkpoint)
cam_mode = cfg.inference_args.camera_mode
current_outdir = os.path.join(world_dir, 'camera_{:02d}'.format(cam_mode))
os.makedirs(current_outdir, exist_ok=True)
z = torch.empty(1, net_G.style_dims, dtype=torch.float32, device=device)
z.normal_(generator=rng_cuda)
net_G.inference_givenstyle(z, current_outdir, **vars(cfg.inference_args))
return os.path.join(current_outdir, ‘rgb_render.mp4’)
markdown=f'''
# SceneDreamer: Unbounded 3D Scene Generation from 2D Image Collections
Authored by Zhaoxi Chen, Guangcong Wang, Ziwei Liu
### Useful links:
- [Official Github Repo](https://github.com/FrozenBurning/SceneDreamer)
- [Project Page](https://scene-dreamer.github.io/)
- [arXiv Link](https://arxiv.org/abs/2302.01330)
Licensed under the S-Lab License.
First use the button "Generate BEV" to randomly sample a 3D world represented by a height map and a semantic map. Then push the button "Render" to generate a camera trajectory flying through the world.
'''
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(markdown)
with gr.Column():
with gr.Row():
with gr.Column():
semantic = gr.Image(type="pil",shape=(2048, 2048))
with gr.Column():
height = gr.Image(type="pil",shape=(2048, 2048))
with gr.Row():
# with gr.Column():
# image = gr.Image(type='pil', shape(540, 960))
with gr.Column():
video=gr.Video()
with gr.Row():
num_frames = gr.Slider(minimum=40, maximum=200, value=40, label='Number of frames for video generation')
user_seed = gr.Slider(minimum=0, maximum=999999, value=8888, label='Random seed to control styles and scenes')
with gr.Row():
btn = gr.Button(value="Generate BEV")
btn_2=gr.Button(value="Render")
btn.click(get_bev,[user_seed],[semantic, height])
btn_2.click(get_video,[user_seed, num_frames],[video])
demo.launch(debug=True)
|