Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
import os | |
import librosa | |
import base64 | |
import io | |
import gradio as gr | |
import re | |
import numpy as np | |
import torch | |
import torchaudio | |
import spaces | |
from funasr import AutoModel | |
model = "FunAudioLLM/SenseVoiceSmall" | |
model = AutoModel(model=model, | |
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch", | |
vad_kwargs={"max_single_segment_time": 30000}, | |
hub="hf", | |
device="cuda" | |
) | |
import re | |
emo_dict = { | |
"<|HAPPY|>": "๐", | |
"<|SAD|>": "๐", | |
"<|ANGRY|>": "๐ก", | |
"<|NEUTRAL|>": "", | |
"<|FEARFUL|>": "๐ฐ", | |
"<|DISGUSTED|>": "๐คข", | |
"<|SURPRISED|>": "๐ฎ", | |
} | |
event_dict = { | |
"<|BGM|>": "๐ผ", | |
"<|Speech|>": "", | |
"<|Applause|>": "๐", | |
"<|Laughter|>": "๐", | |
"<|Cry|>": "๐ญ", | |
"<|Sneeze|>": "๐คง", | |
"<|Breath|>": "", | |
"<|Cough|>": "๐คง", | |
} | |
emoji_dict = { | |
"<|nospeech|><|Event_UNK|>": "โ", | |
"<|zh|>": "", | |
"<|en|>": "", | |
"<|yue|>": "", | |
"<|ja|>": "", | |
"<|ko|>": "", | |
"<|nospeech|>": "", | |
"<|HAPPY|>": "๐", | |
"<|SAD|>": "๐", | |
"<|ANGRY|>": "๐ก", | |
"<|NEUTRAL|>": "", | |
"<|BGM|>": "๐ผ", | |
"<|Speech|>": "", | |
"<|Applause|>": "๐", | |
"<|Laughter|>": "๐", | |
"<|FEARFUL|>": "๐ฐ", | |
"<|DISGUSTED|>": "๐คข", | |
"<|SURPRISED|>": "๐ฎ", | |
"<|Cry|>": "๐ญ", | |
"<|EMO_UNKNOWN|>": "", | |
"<|Sneeze|>": "๐คง", | |
"<|Breath|>": "", | |
"<|Cough|>": "๐ท", | |
"<|Sing|>": "", | |
"<|Speech_Noise|>": "", | |
"<|withitn|>": "", | |
"<|woitn|>": "", | |
"<|GBG|>": "", | |
"<|Event_UNK|>": "", | |
} | |
lang_dict = { | |
"<|zh|>": "<|lang|>", | |
"<|en|>": "<|lang|>", | |
"<|yue|>": "<|lang|>", | |
"<|ja|>": "<|lang|>", | |
"<|ko|>": "<|lang|>", | |
"<|nospeech|>": "<|lang|>", | |
} | |
emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"} | |
event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท",} | |
def format_str(s): | |
for sptk in emoji_dict: | |
s = s.replace(sptk, emoji_dict[sptk]) | |
return s | |
def format_str_v2(s): | |
sptk_dict = {} | |
for sptk in emoji_dict: | |
sptk_dict[sptk] = s.count(sptk) | |
s = s.replace(sptk, "") | |
emo = "<|NEUTRAL|>" | |
for e in emo_dict: | |
if sptk_dict[e] > sptk_dict[emo]: | |
emo = e | |
for e in event_dict: | |
if sptk_dict[e] > 0: | |
s = event_dict[e] + s | |
s = s + emo_dict[emo] | |
for emoji in emo_set.union(event_set): | |
s = s.replace(" " + emoji, emoji) | |
s = s.replace(emoji + " ", emoji) | |
return s.strip() | |
def format_str_v3(s): | |
def get_emo(s): | |
return s[-1] if s[-1] in emo_set else None | |
def get_event(s): | |
return s[0] if s[0] in event_set else None | |
s = s.replace("<|nospeech|><|Event_UNK|>", "โ") | |
for lang in lang_dict: | |
s = s.replace(lang, "<|lang|>") | |
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")] | |
new_s = " " + s_list[0] | |
cur_ent_event = get_event(new_s) | |
for i in range(1, len(s_list)): | |
if len(s_list[i]) == 0: | |
continue | |
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None: | |
s_list[i] = s_list[i][1:] | |
#else: | |
cur_ent_event = get_event(s_list[i]) | |
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s): | |
new_s = new_s[:-1] | |
new_s += s_list[i].strip().lstrip() | |
new_s = new_s.replace("The.", " ") | |
return new_s.strip() | |
def model_inference(input_wav, language, fs=16000): | |
# task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")} | |
language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko", | |
"nospeech": "nospeech"} | |
# task = "Speech Recognition" if task is None else task | |
language = "auto" if len(language) < 1 else language | |
selected_language = language_abbr[language] | |
# selected_task = task_abbr.get(task) | |
# print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}") | |
if isinstance(input_wav, tuple): | |
fs, input_wav = input_wav | |
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max | |
if len(input_wav.shape) > 1: | |
input_wav = input_wav.mean(-1) | |
if fs != 16000: | |
print(f"audio_fs: {fs}") | |
resampler = torchaudio.transforms.Resample(fs, 16000) | |
input_wav_t = torch.from_numpy(input_wav).to(torch.float32) | |
input_wav = resampler(input_wav_t[None, :])[0, :].numpy() | |
merge_vad = True #False if selected_task == "ASR" else True | |
print(f"language: {language}, merge_vad: {merge_vad}") | |
text = model.generate(input=input_wav, | |
cache={}, | |
language=language, | |
use_itn=True, | |
batch_size_s=500, merge_vad=merge_vad) | |
print(text) | |
text = text[0]["text"] | |
text = format_str_v3(text) | |
print(text) | |
return text | |
audio_examples = [ | |
["example/zh.mp3", "zh"], | |
["example/yue.mp3", "yue"], | |
["example/en.mp3", "en"], | |
["example/ja.mp3", "ja"], | |
["example/ko.mp3", "ko"], | |
["example/emo_1.wav", "auto"], | |
["example/emo_2.wav", "auto"], | |
["example/emo_3.wav", "auto"], | |
["example/rich_1.wav", "auto"], | |
["example/rich_2.wav", "auto"], | |
["example/longwav_1.wav", "auto"], | |
["example/longwav_2.wav", "auto"], | |
["example/longwav_3.wav", "auto"], | |
] | |
html_content = """ | |
<div> | |
<h2 style="font-size: 22px;margin-left: 0px;">Voice Understanding Model: SenseVoice-Small</h2> | |
<p style="font-size: 18px;margin-left: 20px;">SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.</p> | |
<h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (๐ happy, ๐ก angry/exicting, ๐ sad) and types of sound events (๐ laughter, ๐ผ music, ๐ applause, ๐คง cough&sneeze, ๐ญ cry). The event labels are placed in the front of the text and the emotion are in the back of the text.</p> | |
<p style="font-size: 18px;margin-left: 20px;">Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p> | |
<h2 style="font-size: 22px;margin-left: 0px;">Repo</h2> | |
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/SenseVoice" target="_blank">SenseVoice</a>: multilingual speech understanding model</p> | |
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/modelscope/FunASR" target="_blank">FunASR</a>: fundamental speech recognition toolkit</p> | |
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/CosyVoice" target="_blank">CosyVoice</a>: high-quality multilingual TTS model</p> | |
</div> | |
""" | |
def launch(): | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
# gr.Markdown(description) | |
gr.HTML(html_content) | |
with gr.Row(): | |
with gr.Column(): | |
audio_inputs = gr.Audio(label="Upload audio or use the microphone") | |
with gr.Accordion("Configuration"): | |
language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"], | |
value="auto", | |
label="Language") | |
fn_button = gr.Button("Start", variant="primary") | |
text_outputs = gr.Textbox(label="Results") | |
gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20) | |
fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs) | |
demo.launch() | |
if __name__ == "__main__": | |
# iface.launch() | |
launch() | |