Spaces:
Running
on
Zero
Running
on
Zero
ๆธธ้
commited on
Commit
โข
5cb9c90
1
Parent(s):
c88b5fa
update
Browse files- .DS_Store +0 -0
- app.py +239 -0
- requirements.txt +8 -0
.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
import os
|
4 |
+
import librosa
|
5 |
+
import base64
|
6 |
+
import io
|
7 |
+
import gradio as gr
|
8 |
+
import re
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torchaudio
|
13 |
+
|
14 |
+
|
15 |
+
from funasr import AutoModel
|
16 |
+
|
17 |
+
model = "FunAudioLLM/SenseVoiceSmall"
|
18 |
+
model = AutoModel(model=model,
|
19 |
+
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
20 |
+
vad_kwargs={"max_single_segment_time": 30000},
|
21 |
+
hub="hf",
|
22 |
+
)
|
23 |
+
|
24 |
+
import re
|
25 |
+
|
26 |
+
emo_dict = {
|
27 |
+
"<|HAPPY|>": "๐",
|
28 |
+
"<|SAD|>": "๐",
|
29 |
+
"<|ANGRY|>": "๐ก",
|
30 |
+
"<|NEUTRAL|>": "",
|
31 |
+
"<|FEARFUL|>": "๐ฐ",
|
32 |
+
"<|DISGUSTED|>": "๐คข",
|
33 |
+
"<|SURPRISED|>": "๐ฎ",
|
34 |
+
}
|
35 |
+
|
36 |
+
event_dict = {
|
37 |
+
"<|BGM|>": "๐ผ",
|
38 |
+
"<|Speech|>": "",
|
39 |
+
"<|Applause|>": "๐",
|
40 |
+
"<|Laughter|>": "๐",
|
41 |
+
"<|Cry|>": "๐ญ",
|
42 |
+
"<|Sneeze|>": "๐คง",
|
43 |
+
"<|Breath|>": "",
|
44 |
+
"<|Cough|>": "๐คง",
|
45 |
+
}
|
46 |
+
|
47 |
+
emoji_dict = {
|
48 |
+
"<|nospeech|><|Event_UNK|>": "โ",
|
49 |
+
"<|zh|>": "",
|
50 |
+
"<|en|>": "",
|
51 |
+
"<|yue|>": "",
|
52 |
+
"<|ja|>": "",
|
53 |
+
"<|ko|>": "",
|
54 |
+
"<|nospeech|>": "",
|
55 |
+
"<|HAPPY|>": "๐",
|
56 |
+
"<|SAD|>": "๐",
|
57 |
+
"<|ANGRY|>": "๐ก",
|
58 |
+
"<|NEUTRAL|>": "",
|
59 |
+
"<|BGM|>": "๐ผ",
|
60 |
+
"<|Speech|>": "",
|
61 |
+
"<|Applause|>": "๐",
|
62 |
+
"<|Laughter|>": "๐",
|
63 |
+
"<|FEARFUL|>": "๐ฐ",
|
64 |
+
"<|DISGUSTED|>": "๐คข",
|
65 |
+
"<|SURPRISED|>": "๐ฎ",
|
66 |
+
"<|Cry|>": "๐ญ",
|
67 |
+
"<|EMO_UNKNOWN|>": "",
|
68 |
+
"<|Sneeze|>": "๐คง",
|
69 |
+
"<|Breath|>": "",
|
70 |
+
"<|Cough|>": "๐ท",
|
71 |
+
"<|Sing|>": "",
|
72 |
+
"<|Speech_Noise|>": "",
|
73 |
+
"<|withitn|>": "",
|
74 |
+
"<|woitn|>": "",
|
75 |
+
"<|GBG|>": "",
|
76 |
+
"<|Event_UNK|>": "",
|
77 |
+
}
|
78 |
+
|
79 |
+
lang_dict = {
|
80 |
+
"<|zh|>": "<|lang|>",
|
81 |
+
"<|en|>": "<|lang|>",
|
82 |
+
"<|yue|>": "<|lang|>",
|
83 |
+
"<|ja|>": "<|lang|>",
|
84 |
+
"<|ko|>": "<|lang|>",
|
85 |
+
"<|nospeech|>": "<|lang|>",
|
86 |
+
}
|
87 |
+
|
88 |
+
emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"}
|
89 |
+
event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท",}
|
90 |
+
|
91 |
+
def format_str(s):
|
92 |
+
for sptk in emoji_dict:
|
93 |
+
s = s.replace(sptk, emoji_dict[sptk])
|
94 |
+
return s
|
95 |
+
|
96 |
+
|
97 |
+
def format_str_v2(s):
|
98 |
+
sptk_dict = {}
|
99 |
+
for sptk in emoji_dict:
|
100 |
+
sptk_dict[sptk] = s.count(sptk)
|
101 |
+
s = s.replace(sptk, "")
|
102 |
+
emo = "<|NEUTRAL|>"
|
103 |
+
for e in emo_dict:
|
104 |
+
if sptk_dict[e] > sptk_dict[emo]:
|
105 |
+
emo = e
|
106 |
+
for e in event_dict:
|
107 |
+
if sptk_dict[e] > 0:
|
108 |
+
s = event_dict[e] + s
|
109 |
+
s = s + emo_dict[emo]
|
110 |
+
|
111 |
+
for emoji in emo_set.union(event_set):
|
112 |
+
s = s.replace(" " + emoji, emoji)
|
113 |
+
s = s.replace(emoji + " ", emoji)
|
114 |
+
return s.strip()
|
115 |
+
|
116 |
+
def format_str_v3(s):
|
117 |
+
def get_emo(s):
|
118 |
+
return s[-1] if s[-1] in emo_set else None
|
119 |
+
def get_event(s):
|
120 |
+
return s[0] if s[0] in event_set else None
|
121 |
+
|
122 |
+
s = s.replace("<|nospeech|><|Event_UNK|>", "โ")
|
123 |
+
for lang in lang_dict:
|
124 |
+
s = s.replace(lang, "<|lang|>")
|
125 |
+
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
|
126 |
+
new_s = " " + s_list[0]
|
127 |
+
cur_ent_event = get_event(new_s)
|
128 |
+
for i in range(1, len(s_list)):
|
129 |
+
if len(s_list[i]) == 0:
|
130 |
+
continue
|
131 |
+
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
|
132 |
+
s_list[i] = s_list[i][1:]
|
133 |
+
#else:
|
134 |
+
cur_ent_event = get_event(s_list[i])
|
135 |
+
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
|
136 |
+
new_s = new_s[:-1]
|
137 |
+
new_s += s_list[i].strip().lstrip()
|
138 |
+
new_s = new_s.replace("The.", " ")
|
139 |
+
return new_s.strip()
|
140 |
+
|
141 |
+
def model_inference(input_wav, language, fs=16000):
|
142 |
+
# task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")}
|
143 |
+
language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko",
|
144 |
+
"nospeech": "nospeech"}
|
145 |
+
|
146 |
+
# task = "Speech Recognition" if task is None else task
|
147 |
+
language = "auto" if len(language) < 1 else language
|
148 |
+
selected_language = language_abbr[language]
|
149 |
+
# selected_task = task_abbr.get(task)
|
150 |
+
|
151 |
+
# print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}")
|
152 |
+
|
153 |
+
if isinstance(input_wav, tuple):
|
154 |
+
fs, input_wav = input_wav
|
155 |
+
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
|
156 |
+
if len(input_wav.shape) > 1:
|
157 |
+
input_wav = input_wav.mean(-1)
|
158 |
+
if fs != 16000:
|
159 |
+
print(f"audio_fs: {fs}")
|
160 |
+
resampler = torchaudio.transforms.Resample(fs, 16000)
|
161 |
+
input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
|
162 |
+
input_wav = resampler(input_wav_t[None, :])[0, :].numpy()
|
163 |
+
|
164 |
+
|
165 |
+
merge_vad = True #False if selected_task == "ASR" else True
|
166 |
+
print(f"language: {language}, merge_vad: {merge_vad}")
|
167 |
+
text = model.generate(input=input_wav,
|
168 |
+
cache={},
|
169 |
+
language=language,
|
170 |
+
use_itn=True,
|
171 |
+
batch_size_s=500, merge_vad=merge_vad)
|
172 |
+
|
173 |
+
print(text)
|
174 |
+
text = text[0]["text"]
|
175 |
+
text = format_str_v3(text)
|
176 |
+
|
177 |
+
print(text)
|
178 |
+
|
179 |
+
return text
|
180 |
+
|
181 |
+
|
182 |
+
audio_examples = [
|
183 |
+
["example/zh.mp3", "zh"],
|
184 |
+
["example/yue.mp3", "yue"],
|
185 |
+
["example/en.mp3", "en"],
|
186 |
+
["example/ja.mp3", "ja"],
|
187 |
+
["example/ko.mp3", "ko"],
|
188 |
+
["example/emo_1.wav", "auto"],
|
189 |
+
["example/emo_2.wav", "auto"],
|
190 |
+
["example/emo_3.wav", "auto"],
|
191 |
+
["example/rich_1.wav", "auto"],
|
192 |
+
["example/rich_2.wav", "auto"],
|
193 |
+
["example/longwav_1.wav", "auto"],
|
194 |
+
["example/longwav_2.wav", "auto"],
|
195 |
+
["example/longwav_3.wav", "auto"],
|
196 |
+
]
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
html_content = """
|
201 |
+
<div>
|
202 |
+
<h2 style="font-size: 22px;margin-left: 0px;">Voice Understanding Model: SenseVoice-Small</h2>
|
203 |
+
<p style="font-size: 18px;margin-left: 20px;">SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.</p>
|
204 |
+
<h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (๐ happy, ๐ก angry/exicting, ๐ sad) and types of sound events (๐ laughter, ๐ผ music, ๐ applause, ๐คง cough&sneeze, ๐ญ cry). The event labels are placed in the front of the text and the emotion are in the back of the text.</p>
|
205 |
+
<p style="font-size: 18px;margin-left: 20px;">Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p>
|
206 |
+
<h2 style="font-size: 22px;margin-left: 0px;">Repo</h2>
|
207 |
+
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/SenseVoice" target="_blank">SenseVoice</a>: multilingual speech understanding model</p>
|
208 |
+
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/modelscope/FunASR" target="_blank">FunASR</a>: fundamental speech recognition toolkit</p>
|
209 |
+
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/CosyVoice" target="_blank">CosyVoice</a>: high-quality multilingual TTS model</p>
|
210 |
+
</div>
|
211 |
+
"""
|
212 |
+
|
213 |
+
|
214 |
+
def launch():
|
215 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
216 |
+
# gr.Markdown(description)
|
217 |
+
gr.HTML(html_content)
|
218 |
+
with gr.Row():
|
219 |
+
with gr.Column():
|
220 |
+
audio_inputs = gr.Audio(label="Upload audio or use the microphone")
|
221 |
+
|
222 |
+
with gr.Accordion("Configuration"):
|
223 |
+
language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
|
224 |
+
value="auto",
|
225 |
+
label="Language")
|
226 |
+
fn_button = gr.Button("Start", variant="primary")
|
227 |
+
text_outputs = gr.Textbox(label="Results")
|
228 |
+
gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20)
|
229 |
+
|
230 |
+
fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs)
|
231 |
+
|
232 |
+
demo.launch()
|
233 |
+
|
234 |
+
|
235 |
+
if __name__ == "__main__":
|
236 |
+
# iface.launch()
|
237 |
+
launch()
|
238 |
+
|
239 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.13
|
2 |
+
torchaudio
|
3 |
+
modelscope
|
4 |
+
huggingface
|
5 |
+
huggingface_hub
|
6 |
+
funasr>=1.1.2
|
7 |
+
numpy<=1.26.4
|
8 |
+
gradio
|