File size: 2,597 Bytes
d5cf576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import requests
import importlib
from bs4 import BeautifulSoup
from huggingface_hub import InferenceClient

# Import weather script
weather = importlib.import_module("weather")

# Hugging Face model
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")

def google_search(query):
    """Scrape Google search for an answer."""
    url = f"https://www.google.com/search?q={query}"
    headers = {"User-Agent": "Mozilla/5.0"}
    
    try:
        response = requests.get(url, headers=headers)
        soup = BeautifulSoup(response.text, "html.parser")
        result = soup.find("div", class_="BNeawe iBp4i AP7Wnd")
        
        if result:
            return result.text
        return "Samahani, siwezi kupata majibu."
    except Exception:
        return "Samahani, siwezi kuwasiliana na Google kwa sasa."

def respond(message, history, system_message, max_tokens, temperature, top_p):
    """Chatbot that answers user and fetches real-time info if needed."""
    
    # Handle weather requests
    if "weather" in message.lower() or "hali ya hewa" in message.lower():
        city = message.split()[-1]  # Last word as city name
        return weather.get_weather(city)

    # Handle time requests
    if "time" in message.lower() or "saa ngapi" in message.lower():
        from datetime import datetime
        return f"Saa ya sasa ni {datetime.now().strftime('%H:%M:%S')}."

    # Model response
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]: messages.append({"role": "user", "content": val[0]})
        if val[1]: messages.append({"role": "assistant", "content": val[1]})
    messages.append({"role": "user", "content": message})

    response = ""
    for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
        token = message.choices[0].delta.content
        response += token

    # If model doesn't know, fetch from Google
    if "I don't know" in response or response.strip() == "":
        response = google_search(message)
    
    return response

# Gradio UI
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
    ],
)

if __name__ == "__main__":
    demo.launch()