FuturesonyAi / app.py
Futuresony's picture
Update app.py
1b31e5e verified
raw
history blame
2.33 kB
import gradio as gr
from huggingface_hub import InferenceClient
from web import search # This will now use the `web` tool correctly
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
def is_uncertain(question, response):
"""Check if the model's response is unreliable."""
if len(response.split()) < 4: # Too short = likely incorrect
return True
if response.lower() in question.lower(): # Repeats question = unsure
return True
uncertain_phrases = [
"Kulingana na utafiti", "Inaaminika kuwa", "Ninadhani",
"It is believed that", "Some people say", "Inasemekana kuwa"
]
if any(phrase.lower() in response.lower() for phrase in uncertain_phrases):
return True
return False
def google_search(query):
"""Fetch search results using web search."""
results = search(query) # This calls the web tool
if results:
return results[0] # Return first result
return "Sorry, I couldn't find an answer on Google."
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]: messages.append({"role": "user", "content": val[0]})
if val[1]: messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
token = message.choices[0].delta.content
response += token
yield response # Stream the response
# If the model's response is unreliable, fetch from Google
if is_uncertain(message, response):
google_response = google_search(message)
yield f"πŸ€– AI: {response}\n\n🌍 Google: {google_response}"
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()