Futuresony commited on
Commit
97f10b6
·
verified ·
1 Parent(s): 240a78d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -26
app.py CHANGED
@@ -1,12 +1,25 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
8
 
 
 
 
 
9
 
 
 
 
 
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -15,8 +28,8 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
@@ -25,40 +38,36 @@ def respond(
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
 
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
38
 
39
- response += token
40
- yield response
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
4
+ from peft import PeftModel # For loading adapter files
5
 
6
+ # Path to the base model and adapter
7
+ BASE_MODEL_PATH = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model path
8
+ ADAPTER_PATH = "Futuresony/future_ai_12_10_2024.gguf/adapter" # Your Hugging Face repo
 
9
 
10
+ # Load base model and tokenizer
11
+ print("Loading base model and tokenizer...")
12
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
13
+ model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_PATH, torch_dtype=torch.float16, device_map="auto")
14
 
15
+ # Load adapter files using PEFT
16
+ print("Loading adapter...")
17
+ model = PeftModel.from_pretrained(model, ADAPTER_PATH)
18
+
19
+ # Set model to evaluation mode
20
+ model.eval()
21
+
22
+ # Generate responses using the model
23
  def respond(
24
  message,
25
  history: list[tuple[str, str]],
 
28
  temperature,
29
  top_p,
30
  ):
31
+ # Format chat messages
32
  messages = [{"role": "system", "content": system_message}]
 
33
  for val in history:
34
  if val[0]:
35
  messages.append({"role": "user", "content": val[0]})
 
38
 
39
  messages.append({"role": "user", "content": message})
40
 
41
+ # Concatenate messages as input text
42
+ input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
43
 
44
+ # Tokenize input text
45
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
46
+
47
+ # Generate response
48
+ generation_config = GenerationConfig(
49
+ max_new_tokens=max_tokens,
50
  temperature=temperature,
51
  top_p=top_p,
52
+ do_sample=True,
53
+ )
54
+
55
+ output_ids = model.generate(**inputs, generation_config=generation_config)
56
+ response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
57
 
58
+ return response.split("assistant:")[-1].strip() # Extract assistant response
 
59
 
60
 
61
+ # Gradio Interface
 
 
62
  demo = gr.ChatInterface(
63
  respond,
64
  additional_inputs=[
65
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
66
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
67
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
68
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
69
  ],
70
  )
71
 
 
72
  if __name__ == "__main__":
73
  demo.launch()