Futuresony commited on
Commit
d291407
·
verified ·
1 Parent(s): 8ea2eaf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -44
app.py CHANGED
@@ -1,48 +1,64 @@
1
  import gradio as gr
2
- import torch
3
- from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaConfig
4
- from peft import PeftModel # For loading adapter files
5
-
6
- # Path to the base model and adapter
7
- BASE_MODEL_PATH = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model path
8
- ADAPTER_PATH = "Futuresony/future_ai_12_10_2024.gguf" # Your Hugging Face repo
9
-
10
- # Function to clean invalid rope_scaling fields in model config
11
- def clean_rope_scaling(config):
12
- if "rope_scaling" in config:
13
- rope_scaling = config["rope_scaling"]
14
- # Retain only "type" and "factor" fields
15
- config["rope_scaling"] = {
16
- "type": rope_scaling.get("rope_type", "linear"),
17
- "factor": rope_scaling.get("factor", 1.0),
18
- }
19
- return config
20
-
21
- # Load base model and tokenizer
22
- print("Loading base model and tokenizer...")
23
- tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
24
-
25
- # Load and clean model configuration
26
- config = LlamaConfig.from_pretrained(BASE_MODEL_PATH)
27
- cleaned_config_dict = clean_rope_scaling(config.to_dict())
28
-
29
- # Reconstruct the cleaned LlamaConfig object
30
- config = LlamaConfig(**cleaned_config_dict)
31
-
32
- # Load model with cleaned configuration
33
- print("Loading model...")
34
- model = AutoModelForCausalLM.from_pretrained(
35
- BASE_MODEL_PATH,
36
- config=config,
37
- torch_dtype=torch.float16,
38
- device_map="auto"
39
- )
40
 
41
- # Load adapter using PEFT
42
- print("Loading adapter...")
43
- model = PeftModel.from_pretrained(model, ADAPTER_PATH)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- # Set model to evaluation mode
46
- model.eval()
47
 
48
- print("Model and adapter loaded successfully!")
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
 
 
 
62
 
63
+ if __name__ == "__main__":
64
+ demo.launch()