Futuresony commited on
Commit
fd4c09d
·
verified ·
1 Parent(s): 93792f3

Update app.py4

Browse files
Files changed (1) hide show
  1. app.py4 +38 -42
app.py4 CHANGED
@@ -1,68 +1,64 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- from selenium import webdriver
4
- from selenium.webdriver.common.by import By
5
- from selenium.webdriver.chrome.service import Service
6
- from webdriver_manager.chrome import ChromeDriverManager
7
- import time
8
 
 
 
 
9
  client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
10
 
11
- def is_uncertain(question, response):
12
- """Check if the model's response is unreliable."""
13
- if len(response.split()) < 4 or response.lower() in question.lower():
14
- return True
15
- uncertain_phrases = ["Kulingana na utafiti", "Inaaminika kuwa", "Ninadhani", "It is believed that", "Some people say"]
16
- return any(phrase.lower() in response.lower() for phrase in uncertain_phrases)
17
 
18
- def google_search(query):
19
- """Fetch search results using Selenium."""
20
- options = webdriver.ChromeOptions()
21
- options.add_argument("--headless") # Run in background
22
- driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=options)
23
-
24
- driver.get(f"https://www.google.com/search?q={query}")
25
- time.sleep(2) # Wait for page to load
26
-
27
- try:
28
- # Extract answer from featured snippet if available
29
- snippet = driver.find_element(By.CLASS_NAME, "hgKElc").text
30
- except:
31
- # Extract first search result
32
- try:
33
- snippet = driver.find_element(By.CSS_SELECTOR, "div.BNeawe.s3v9rd.AP7Wnd").text
34
- except:
35
- snippet = "Sorry, I couldn't find an answer on Google."
36
-
37
- driver.quit()
38
- return snippet
39
-
40
- def respond(message, history, system_message, max_tokens, temperature, top_p):
41
  messages = [{"role": "system", "content": system_message}]
 
42
  for val in history:
43
- if val[0]: messages.append({"role": "user", "content": val[0]})
44
- if val[1]: messages.append({"role": "assistant", "content": val[1]})
 
 
 
45
  messages.append({"role": "user", "content": message})
46
 
47
  response = ""
48
- for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
 
 
 
 
 
 
 
49
  token = message.choices[0].delta.content
 
50
  response += token
51
- yield response # Stream the response
52
 
53
- if is_uncertain(message, response):
54
- google_response = google_search(message)
55
- yield f"🤖 AI: {response}\n\n🌍 Google: {google_response}"
56
 
 
 
 
57
  demo = gr.ChatInterface(
58
  respond,
59
  additional_inputs=[
60
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
61
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
62
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
63
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
 
 
 
 
 
 
64
  ],
65
  )
66
 
 
67
  if __name__ == "__main__":
68
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
  client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
8
 
 
 
 
 
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  messages = [{"role": "system", "content": system_message}]
19
+
20
  for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
  token = message.choices[0].delta.content
38
+
39
  response += token
40
+ yield response
41
 
 
 
 
42
 
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
  ],
60
  )
61
 
62
+
63
  if __name__ == "__main__":
64
  demo.launch()