Futuresony's picture
Update lid.py
c9a70b0 verified
raw
history blame
2.55 kB
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import torch
import librosa
import numpy as np
import os
# Load Facebook MMS Language Identification Model
MODEL_ID = "facebook/mms-lid-1024"
processor = AutoFeatureExtractor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForSequenceClassification.from_pretrained(MODEL_ID)
# Constants
LID_SAMPLING_RATE = 16_000
LID_THRESHOLD = 0.33 # Confidence threshold
LID_LANGUAGES = {}
# Load Language Labels
LANG_FILE = "data/lid/all_langs.tsv"
if not os.path.exists(LANG_FILE):
raise FileNotFoundError(f"Language file '{LANG_FILE}' not found!")
with open(LANG_FILE, encoding="utf-8") as f:
for line in f:
iso, name = line.strip().split(" ", 1)
LID_LANGUAGES[iso] = name
# Identify Audio Language
def identify(audio_data=None):
if not audio_data:
return "<<ERROR: Empty Audio Input>>"
# Microphone Input
if isinstance(audio_data, tuple):
sr, audio_samples = audio_data
audio_samples = (audio_samples / 32768.0).astype(np.float32)
if sr != LID_SAMPLING_RATE:
audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=LID_SAMPLING_RATE)
# File Upload
elif isinstance(audio_data, str):
if not os.path.exists(audio_data):
return f"<<ERROR: File '{audio_data}' not found!>>"
audio_samples, _ = librosa.load(audio_data, sr=LID_SAMPLING_RATE, mono=True)
else:
return "<<ERROR: Invalid Audio Input>>"
# Process Input
inputs = processor(audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt")
# Select Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = inputs.to(device)
# Predict Language
with torch.no_grad():
logit = model(**inputs).logits
# Compute Probabilities
logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1)
scores, indices = torch.topk(logit_lsm, 5, dim=-1)
scores, indices = torch.exp(scores).cpu().tolist(), indices.cpu().tolist()
# Map to Language Labels
iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)}
# Confidence Check
if max(iso2score.values()) < LID_THRESHOLD:
return "Low confidence in language detection. No output shown."
return {LID_LANGUAGES.get(iso, iso): score for iso, score in iso2score.items()}
# Example Usage
LID_EXAMPLES = [
["upload/english.mp3"],
["upload/tamil.mp3"],
["upload/burmese.mp3"],
]