Spaces:
Sleeping
Sleeping
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor | |
import torch | |
import librosa | |
import numpy as np | |
import os | |
# Load Facebook MMS Language Identification Model | |
MODEL_ID = "facebook/mms-lid-1024" | |
processor = AutoFeatureExtractor.from_pretrained(MODEL_ID) | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(MODEL_ID) | |
# Constants | |
LID_SAMPLING_RATE = 16_000 | |
LID_THRESHOLD = 0.33 # Confidence threshold | |
LID_LANGUAGES = {} | |
# Load Language Labels | |
LANG_FILE = "data/lid/all_langs.tsv" | |
if not os.path.exists(LANG_FILE): | |
raise FileNotFoundError(f"Language file '{LANG_FILE}' not found!") | |
with open(LANG_FILE, encoding="utf-8") as f: | |
for line in f: | |
iso, name = line.strip().split(" ", 1) | |
LID_LANGUAGES[iso] = name | |
# Identify Audio Language | |
def identify(audio_data=None): | |
if not audio_data: | |
return "<<ERROR: Empty Audio Input>>" | |
# Microphone Input | |
if isinstance(audio_data, tuple): | |
sr, audio_samples = audio_data | |
audio_samples = (audio_samples / 32768.0).astype(np.float32) | |
if sr != LID_SAMPLING_RATE: | |
audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=LID_SAMPLING_RATE) | |
# File Upload | |
elif isinstance(audio_data, str): | |
if not os.path.exists(audio_data): | |
return f"<<ERROR: File '{audio_data}' not found!>>" | |
audio_samples, _ = librosa.load(audio_data, sr=LID_SAMPLING_RATE, mono=True) | |
else: | |
return "<<ERROR: Invalid Audio Input>>" | |
# Process Input | |
inputs = processor(audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt") | |
# Select Device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
inputs = inputs.to(device) | |
# Predict Language | |
with torch.no_grad(): | |
logit = model(**inputs).logits | |
# Compute Probabilities | |
logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1) | |
scores, indices = torch.topk(logit_lsm, 5, dim=-1) | |
scores, indices = torch.exp(scores).cpu().tolist(), indices.cpu().tolist() | |
# Map to Language Labels | |
iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)} | |
# Confidence Check | |
if max(iso2score.values()) < LID_THRESHOLD: | |
return "Low confidence in language detection. No output shown." | |
return {LID_LANGUAGES.get(iso, iso): score for iso, score in iso2score.items()} | |
# Example Usage | |
LID_EXAMPLES = [ | |
["upload/english.mp3"], | |
["upload/tamil.mp3"], | |
["upload/burmese.mp3"], | |
] | |