Spaces:
Sleeping
Sleeping
Update asr.py
Browse files
asr.py
CHANGED
@@ -1,59 +1,58 @@
|
|
1 |
import librosa
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
-
import langid
|
5 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
6 |
|
7 |
ASR_SAMPLING_RATE = 16_000
|
8 |
-
MODEL_ID = "facebook/mms-1b-all"
|
9 |
|
10 |
-
# Load MMS Model
|
11 |
-
|
12 |
-
|
13 |
-
model.
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def detect_language(text):
|
16 |
-
"""Detects language using langid (fast & lightweight)."""
|
17 |
lang, _ = langid.classify(text)
|
18 |
-
return lang if lang in ["en", "sw"] else "en"
|
19 |
|
20 |
def transcribe_auto(audio_data=None):
|
21 |
if not audio_data:
|
22 |
return "<<ERROR: Empty Audio Input>>"
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
ids = torch.argmax(outputs, dim=-1)[0]
|
57 |
-
final_transcription = processor.decode(ids)
|
58 |
-
|
59 |
-
return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}"
|
|
|
1 |
import librosa
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
import langid
|
5 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
6 |
|
7 |
ASR_SAMPLING_RATE = 16_000
|
8 |
+
MODEL_ID = "facebook/mms-1b-all" # Or your model ID
|
9 |
|
10 |
+
# Load MMS Model (outside the function, for efficiency)
|
11 |
+
try:
|
12 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
13 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
14 |
+
model.eval()
|
15 |
+
except Exception as e:
|
16 |
+
print(f"Error loading initial model: {e}") # Handle initial model loading errors
|
17 |
+
exit(1) # Or raise the exception if you prefer
|
18 |
|
19 |
def detect_language(text):
|
|
|
20 |
lang, _ = langid.classify(text)
|
21 |
+
return lang if lang in ["en", "sw"] else "en"
|
22 |
|
23 |
def transcribe_auto(audio_data=None):
|
24 |
if not audio_data:
|
25 |
return "<<ERROR: Empty Audio Input>>"
|
26 |
+
|
27 |
+
# ... (audio processing code remains the same) ...
|
28 |
+
|
29 |
+
try: # Wrap the entire transcription process
|
30 |
+
# **Step 1: Transcribe without Language Detection**
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs).logits
|
33 |
+
ids = torch.argmax(outputs, dim=-1)[0]
|
34 |
+
raw_transcription = processor.decode(ids)
|
35 |
+
|
36 |
+
# **Step 2: Detect Language from Transcription**
|
37 |
+
detected_lang = detect_language(raw_transcription)
|
38 |
+
lang_code = "eng" if detected_lang == "en" else "swh"
|
39 |
+
|
40 |
+
# **Step 3: Reload Model with Correct Adapter (CRITICAL CHANGE)**
|
41 |
+
try: # Wrap adapter loading
|
42 |
+
processor.tokenizer.set_target_lang(lang_code)
|
43 |
+
model.load_adapter(lang_code) # This is the most likely source of errors
|
44 |
+
except Exception as adapter_error: # Catch adapter loading errors
|
45 |
+
print(f"Error loading adapter for {detected_lang}: {adapter_error}")
|
46 |
+
return f"<<ERROR: Could not load adapter for {detected_lang}>>" # Or raise
|
47 |
+
|
48 |
+
# **Step 4: Transcribe Again with Correct Adapter**
|
49 |
+
with torch.no_grad():
|
50 |
+
outputs = model(**inputs).logits
|
51 |
+
ids = torch.argmax(outputs, dim=-1)[0]
|
52 |
+
final_transcription = processor.decode(ids)
|
53 |
+
|
54 |
+
return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}"
|
55 |
+
|
56 |
+
except Exception as overall_error: # Catch any other errors during transcription
|
57 |
+
print(f"An error occurred during transcription: {overall_error}")
|
58 |
+
return f"<<ERROR: {overall_error}>>"
|
|
|
|
|
|
|
|