Futuresony commited on
Commit
40c9fce
·
verified ·
1 Parent(s): d2551e8

Create asr.py

Browse files
Files changed (1) hide show
  1. asr.py +49 -0
asr.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ import numpy as np
4
+ from transformers import Wav2Vec2ForCTC, AutoProcessor
5
+
6
+ ASR_SAMPLING_RATE = 16_000
7
+ MODEL_ID = "facebook/mms-1b-all"
8
+
9
+ # Load MMS Model
10
+ processor = AutoProcessor.from_pretrained(MODEL_ID)
11
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
12
+ model.eval()
13
+
14
+ def transcribe_auto(audio_data=None):
15
+ if not audio_data:
16
+ return "<<ERROR: Empty Audio Input>>"
17
+
18
+ # Process Microphone Input
19
+ if isinstance(audio_data, tuple):
20
+ sr, audio_samples = audio_data
21
+ audio_samples = (audio_samples / 32768.0).astype(np.float32)
22
+ if sr != ASR_SAMPLING_RATE:
23
+ audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE)
24
+
25
+ # Process File Upload Input
26
+ else:
27
+ if not isinstance(audio_data, str):
28
+ return "<<ERROR: Invalid Audio Input>>"
29
+ audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
30
+
31
+ inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
32
+
33
+ # **Step 1: Detect Language**
34
+ with torch.no_grad():
35
+ lang_id = model.generate(**inputs, task="lang-id")
36
+ detected_lang = processor.tokenizer.batch_decode(lang_id, skip_special_tokens=True)[0]
37
+
38
+ # **Step 2: Load Detected Language Adapter**
39
+ processor.tokenizer.set_target_lang(detected_lang)
40
+ model.load_adapter(detected_lang)
41
+
42
+ # **Step 3: Transcribe Audio**
43
+ with torch.no_grad():
44
+ outputs = model(**inputs).logits
45
+ ids = torch.argmax(outputs, dim=-1)[0]
46
+ transcription = processor.decode(ids)
47
+
48
+ return f"Detected Language: {detected_lang}\n\nTranscription:\n{transcription}"
49
+