import gradio as gr import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, AutoProcessor # Assuming 'transcribe' was defined in a previous cell. # If not, define it here or import it from the correct module. # Create a placeholder for ASR_LANGUAGES if it's not defined elsewhere. ASR_LANGUAGES = {"eng": "English", "swh": "Swahili"} # Replace with your actual languages # ✅ Define or Re-define the `transcribe` function within this cell MODEL_ID = "facebook/mms-1b-all" # Make sure this is the same model ID used for training processor = AutoProcessor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) def transcribe(audio_path, language): """Transcribes an audio file using the fine-tuned model.""" # Set the target language based on user selection if language: target_lang = language.split(" ")[0] # Extract language code processor.tokenizer.set_target_lang(target_lang) if target_lang != "eng": # Load adapter if not English model.load_adapter(target_lang) audio, samplerate = sf.read(audio_path) inputs = processor(audio, sampling_rate=samplerate, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] return processor.decode(ids) mms_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(), gr.Dropdown( [f"{k} ({v})" for k, v in ASR_LANGUAGES.items()], label="Language", value="eng English", ), ], outputs="text", title="Speech-to-Text Transcription", description="Transcribe audio input into text.", allow_flagging="never", ) with gr.Blocks() as demo: mms_transcribe.render() if __name__ == "__main__": demo.queue() demo.launch()