Kyle Dampier commited on
Commit
4789c9d
1 Parent(s): 89e16b4

retrained model and got it ready for a demo of over fitting

Browse files
Files changed (2) hide show
  1. Week1.ipynb +34 -25
  2. mnist.h5 +1 -1
Week1.ipynb CHANGED
@@ -20,7 +20,7 @@
20
  },
21
  {
22
  "cell_type": "code",
23
- "execution_count": 2,
24
  "metadata": {},
25
  "outputs": [],
26
  "source": [
@@ -38,7 +38,7 @@
38
  },
39
  {
40
  "cell_type": "code",
41
- "execution_count": 3,
42
  "metadata": {},
43
  "outputs": [
44
  {
@@ -85,7 +85,7 @@
85
  },
86
  {
87
  "cell_type": "code",
88
- "execution_count": 4,
89
  "metadata": {},
90
  "outputs": [
91
  {
@@ -144,6 +144,18 @@
144
  "## Train the Model"
145
  ]
146
  },
 
 
 
 
 
 
 
 
 
 
 
 
147
  {
148
  "cell_type": "code",
149
  "execution_count": 5,
@@ -154,41 +166,41 @@
154
  "output_type": "stream",
155
  "text": [
156
  "Epoch 1/15\n",
157
- "422/422 [==============================] - 6s 3ms/step - loss: 0.3744 - accuracy: 0.8868 - val_loss: 0.0892 - val_accuracy: 0.9763\n",
158
  "Epoch 2/15\n",
159
- "422/422 [==============================] - 1s 3ms/step - loss: 0.1177 - accuracy: 0.9634 - val_loss: 0.0660 - val_accuracy: 0.9817\n",
160
  "Epoch 3/15\n",
161
- "422/422 [==============================] - 1s 3ms/step - loss: 0.0876 - accuracy: 0.9732 - val_loss: 0.0480 - val_accuracy: 0.9865\n",
162
  "Epoch 4/15\n",
163
- "422/422 [==============================] - 1s 3ms/step - loss: 0.0738 - accuracy: 0.9774 - val_loss: 0.0462 - val_accuracy: 0.9872\n",
164
  "Epoch 5/15\n",
165
- "422/422 [==============================] - 1s 3ms/step - loss: 0.0642 - accuracy: 0.9805 - val_loss: 0.0440 - val_accuracy: 0.9872\n",
166
  "Epoch 6/15\n",
167
- "422/422 [==============================] - 1s 2ms/step - loss: 0.0585 - accuracy: 0.9818 - val_loss: 0.0373 - val_accuracy: 0.9898\n",
168
  "Epoch 7/15\n",
169
- "422/422 [==============================] - 1s 3ms/step - loss: 0.0544 - accuracy: 0.9832 - val_loss: 0.0348 - val_accuracy: 0.9908\n",
170
  "Epoch 8/15\n",
171
- "422/422 [==============================] - 1s 3ms/step - loss: 0.0495 - accuracy: 0.9845 - val_loss: 0.0342 - val_accuracy: 0.9907\n",
172
  "Epoch 9/15\n",
173
- "422/422 [==============================] - 1s 2ms/step - loss: 0.0462 - accuracy: 0.9853 - val_loss: 0.0313 - val_accuracy: 0.9910\n",
174
  "Epoch 10/15\n",
175
- "422/422 [==============================] - 1s 2ms/step - loss: 0.0444 - accuracy: 0.9858 - val_loss: 0.0320 - val_accuracy: 0.9907\n",
176
  "Epoch 11/15\n",
177
- "422/422 [==============================] - 1s 2ms/step - loss: 0.0418 - accuracy: 0.9872 - val_loss: 0.0303 - val_accuracy: 0.9913\n",
178
  "Epoch 12/15\n",
179
- "422/422 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9874 - val_loss: 0.0276 - val_accuracy: 0.9922\n",
180
  "Epoch 13/15\n",
181
- "422/422 [==============================] - 1s 3ms/step - loss: 0.0381 - accuracy: 0.9875 - val_loss: 0.0292 - val_accuracy: 0.9912\n",
182
  "Epoch 14/15\n",
183
- "422/422 [==============================] - 1s 2ms/step - loss: 0.0368 - accuracy: 0.9879 - val_loss: 0.0291 - val_accuracy: 0.9920\n",
184
  "Epoch 15/15\n",
185
- "422/422 [==============================] - 1s 2ms/step - loss: 0.0356 - accuracy: 0.9888 - val_loss: 0.0257 - val_accuracy: 0.9925\n"
186
  ]
187
  },
188
  {
189
  "data": {
190
  "text/plain": [
191
- "<keras.callbacks.History at 0x1c9d4871f40>"
192
  ]
193
  },
194
  "execution_count": 5,
@@ -197,10 +209,7 @@
197
  }
198
  ],
199
  "source": [
200
- "batch_size = 128\n",
201
- "epochs = 15\n",
202
- "\n",
203
- "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
204
  "\n",
205
  "model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
206
  ]
@@ -221,8 +230,8 @@
221
  "name": "stdout",
222
  "output_type": "stream",
223
  "text": [
224
- "Test loss: 0.026043808087706566\n",
225
- "Test accuracy: 0.9907000064849854\n"
226
  ]
227
  }
228
  ],
 
20
  },
21
  {
22
  "cell_type": "code",
23
+ "execution_count": 1,
24
  "metadata": {},
25
  "outputs": [],
26
  "source": [
 
38
  },
39
  {
40
  "cell_type": "code",
41
+ "execution_count": 2,
42
  "metadata": {},
43
  "outputs": [
44
  {
 
85
  },
86
  {
87
  "cell_type": "code",
88
+ "execution_count": 3,
89
  "metadata": {},
90
  "outputs": [
91
  {
 
144
  "## Train the Model"
145
  ]
146
  },
147
+ {
148
+ "cell_type": "code",
149
+ "execution_count": 4,
150
+ "metadata": {},
151
+ "outputs": [],
152
+ "source": [
153
+ "batch_size = 128\n",
154
+ "epochs = 15\n",
155
+ "\n",
156
+ "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])"
157
+ ]
158
+ },
159
  {
160
  "cell_type": "code",
161
  "execution_count": 5,
 
166
  "output_type": "stream",
167
  "text": [
168
  "Epoch 1/15\n",
169
+ "422/422 [==============================] - 4s 3ms/step - loss: 0.3724 - accuracy: 0.8837 - val_loss: 0.0810 - val_accuracy: 0.9785\n",
170
  "Epoch 2/15\n",
171
+ "422/422 [==============================] - 1s 3ms/step - loss: 0.1118 - accuracy: 0.9671 - val_loss: 0.0562 - val_accuracy: 0.9852\n",
172
  "Epoch 3/15\n",
173
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0835 - accuracy: 0.9739 - val_loss: 0.0481 - val_accuracy: 0.9872\n",
174
  "Epoch 4/15\n",
175
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0700 - accuracy: 0.9787 - val_loss: 0.0404 - val_accuracy: 0.9898\n",
176
  "Epoch 5/15\n",
177
+ "422/422 [==============================] - 1s 3ms/step - loss: 0.0604 - accuracy: 0.9815 - val_loss: 0.0381 - val_accuracy: 0.9910\n",
178
  "Epoch 6/15\n",
179
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0559 - accuracy: 0.9826 - val_loss: 0.0354 - val_accuracy: 0.9903\n",
180
  "Epoch 7/15\n",
181
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0505 - accuracy: 0.9829 - val_loss: 0.0338 - val_accuracy: 0.9903\n",
182
  "Epoch 8/15\n",
183
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0484 - accuracy: 0.9847 - val_loss: 0.0296 - val_accuracy: 0.9923\n",
184
  "Epoch 9/15\n",
185
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0443 - accuracy: 0.9860 - val_loss: 0.0333 - val_accuracy: 0.9912\n",
186
  "Epoch 10/15\n",
187
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0422 - accuracy: 0.9869 - val_loss: 0.0308 - val_accuracy: 0.9927\n",
188
  "Epoch 11/15\n",
189
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0397 - accuracy: 0.9874 - val_loss: 0.0321 - val_accuracy: 0.9922\n",
190
  "Epoch 12/15\n",
191
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0375 - accuracy: 0.9875 - val_loss: 0.0269 - val_accuracy: 0.9928\n",
192
  "Epoch 13/15\n",
193
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0355 - accuracy: 0.9886 - val_loss: 0.0296 - val_accuracy: 0.9925\n",
194
  "Epoch 14/15\n",
195
+ "422/422 [==============================] - 1s 2ms/step - loss: 0.0340 - accuracy: 0.9888 - val_loss: 0.0291 - val_accuracy: 0.9928\n",
196
  "Epoch 15/15\n",
197
+ "422/422 [==============================] - 1s 3ms/step - loss: 0.0321 - accuracy: 0.9894 - val_loss: 0.0277 - val_accuracy: 0.9927\n"
198
  ]
199
  },
200
  {
201
  "data": {
202
  "text/plain": [
203
+ "<keras.callbacks.History at 0x14a08dfc3d0>"
204
  ]
205
  },
206
  "execution_count": 5,
 
209
  }
210
  ],
211
  "source": [
212
+ "# This line can be run multiple times, but keep in mind that the model will probably be over fitting\n",
 
 
 
213
  "\n",
214
  "model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
215
  ]
 
230
  "name": "stdout",
231
  "output_type": "stream",
232
  "text": [
233
+ "Test loss: 0.02324853651225567\n",
234
+ "Test accuracy: 0.9922000169754028\n"
235
  ]
236
  }
237
  ],
mnist.h5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6fb1eb48a18fd769f17f093224aa1246b41d132a56a4cbe28e0b73382bd7e28
3
  size 455304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9d7830249bb932ad3715ba3d277c9415cd8a8a4c6d100eb6a1f8568f58fa8f
3
  size 455304