Spaces:
Runtime error
Runtime error
Kyle Dampier
commited on
Commit
•
e82c862
1
Parent(s):
1a84122
added training ipynb to my project
Browse files- Week1.ipynb +386 -0
Week1.ipynb
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Introduction to Machine Learning\n",
|
8 |
+
"\n",
|
9 |
+
"This notebook is an example of a CNN for recognizing handwritten characters.\n",
|
10 |
+
"\n",
|
11 |
+
"Most of this code is from https://keras.io/examples/vision/mnist_convnet/"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"## Setup"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 2,
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"import numpy as np\n",
|
28 |
+
"from tensorflow import keras\n",
|
29 |
+
"from tensorflow.keras import layers"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "markdown",
|
34 |
+
"metadata": {},
|
35 |
+
"source": [
|
36 |
+
"## Prepare the data"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 3,
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"name": "stdout",
|
46 |
+
"output_type": "stream",
|
47 |
+
"text": [
|
48 |
+
"x_train shape: (60000, 28, 28, 1)\n",
|
49 |
+
"60000 train samples\n",
|
50 |
+
"10000 test samples\n"
|
51 |
+
]
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"# Model / data parameters\n",
|
56 |
+
"num_classes = 10\n",
|
57 |
+
"input_shape = (28, 28, 1)\n",
|
58 |
+
"\n",
|
59 |
+
"# Load the data and split it between train and test sets\n",
|
60 |
+
"(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()\n",
|
61 |
+
"\n",
|
62 |
+
"# Scale images to the [0, 1] range\n",
|
63 |
+
"x_train = x_train.astype(\"float32\") / 255\n",
|
64 |
+
"x_test = x_test.astype(\"float32\") / 255\n",
|
65 |
+
"\n",
|
66 |
+
"# Make sure images have shape (28, 28, 1)\n",
|
67 |
+
"x_train = np.expand_dims(x_train, -1)\n",
|
68 |
+
"x_test = np.expand_dims(x_test, -1)\n",
|
69 |
+
"print(\"x_train shape:\", x_train.shape)\n",
|
70 |
+
"print(x_train.shape[0], \"train samples\")\n",
|
71 |
+
"print(x_test.shape[0], \"test samples\")\n",
|
72 |
+
"\n",
|
73 |
+
"\n",
|
74 |
+
"# convert class vectors to binary class matrices\n",
|
75 |
+
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
76 |
+
"y_test = keras.utils.to_categorical(y_test, num_classes)"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "markdown",
|
81 |
+
"metadata": {},
|
82 |
+
"source": [
|
83 |
+
"## Build the Model"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": 4,
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"name": "stdout",
|
93 |
+
"output_type": "stream",
|
94 |
+
"text": [
|
95 |
+
"Model: \"sequential\"\n",
|
96 |
+
"_________________________________________________________________\n",
|
97 |
+
" Layer (type) Output Shape Param # \n",
|
98 |
+
"=================================================================\n",
|
99 |
+
" conv2d (Conv2D) (None, 26, 26, 32) 320 \n",
|
100 |
+
" \n",
|
101 |
+
" max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0 \n",
|
102 |
+
" ) \n",
|
103 |
+
" \n",
|
104 |
+
" conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 \n",
|
105 |
+
" \n",
|
106 |
+
" max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0 \n",
|
107 |
+
" 2D) \n",
|
108 |
+
" \n",
|
109 |
+
" flatten (Flatten) (None, 1600) 0 \n",
|
110 |
+
" \n",
|
111 |
+
" dropout (Dropout) (None, 1600) 0 \n",
|
112 |
+
" \n",
|
113 |
+
" dense (Dense) (None, 10) 16010 \n",
|
114 |
+
" \n",
|
115 |
+
"=================================================================\n",
|
116 |
+
"Total params: 34,826\n",
|
117 |
+
"Trainable params: 34,826\n",
|
118 |
+
"Non-trainable params: 0\n",
|
119 |
+
"_________________________________________________________________\n"
|
120 |
+
]
|
121 |
+
}
|
122 |
+
],
|
123 |
+
"source": [
|
124 |
+
"model = keras.Sequential(\n",
|
125 |
+
" [\n",
|
126 |
+
" keras.Input(shape=input_shape),\n",
|
127 |
+
" layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\"),\n",
|
128 |
+
" layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
129 |
+
" layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"),\n",
|
130 |
+
" layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
131 |
+
" layers.Flatten(),\n",
|
132 |
+
" layers.Dropout(0.5),\n",
|
133 |
+
" layers.Dense(num_classes, activation=\"softmax\"),\n",
|
134 |
+
" ]\n",
|
135 |
+
")\n",
|
136 |
+
"\n",
|
137 |
+
"model.summary()"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "markdown",
|
142 |
+
"metadata": {},
|
143 |
+
"source": [
|
144 |
+
"## Train the Model"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": 5,
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [
|
152 |
+
{
|
153 |
+
"name": "stdout",
|
154 |
+
"output_type": "stream",
|
155 |
+
"text": [
|
156 |
+
"Epoch 1/15\n",
|
157 |
+
"422/422 [==============================] - 6s 3ms/step - loss: 0.3744 - accuracy: 0.8868 - val_loss: 0.0892 - val_accuracy: 0.9763\n",
|
158 |
+
"Epoch 2/15\n",
|
159 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.1177 - accuracy: 0.9634 - val_loss: 0.0660 - val_accuracy: 0.9817\n",
|
160 |
+
"Epoch 3/15\n",
|
161 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.0876 - accuracy: 0.9732 - val_loss: 0.0480 - val_accuracy: 0.9865\n",
|
162 |
+
"Epoch 4/15\n",
|
163 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.0738 - accuracy: 0.9774 - val_loss: 0.0462 - val_accuracy: 0.9872\n",
|
164 |
+
"Epoch 5/15\n",
|
165 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.0642 - accuracy: 0.9805 - val_loss: 0.0440 - val_accuracy: 0.9872\n",
|
166 |
+
"Epoch 6/15\n",
|
167 |
+
"422/422 [==============================] - 1s 2ms/step - loss: 0.0585 - accuracy: 0.9818 - val_loss: 0.0373 - val_accuracy: 0.9898\n",
|
168 |
+
"Epoch 7/15\n",
|
169 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.0544 - accuracy: 0.9832 - val_loss: 0.0348 - val_accuracy: 0.9908\n",
|
170 |
+
"Epoch 8/15\n",
|
171 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.0495 - accuracy: 0.9845 - val_loss: 0.0342 - val_accuracy: 0.9907\n",
|
172 |
+
"Epoch 9/15\n",
|
173 |
+
"422/422 [==============================] - 1s 2ms/step - loss: 0.0462 - accuracy: 0.9853 - val_loss: 0.0313 - val_accuracy: 0.9910\n",
|
174 |
+
"Epoch 10/15\n",
|
175 |
+
"422/422 [==============================] - 1s 2ms/step - loss: 0.0444 - accuracy: 0.9858 - val_loss: 0.0320 - val_accuracy: 0.9907\n",
|
176 |
+
"Epoch 11/15\n",
|
177 |
+
"422/422 [==============================] - 1s 2ms/step - loss: 0.0418 - accuracy: 0.9872 - val_loss: 0.0303 - val_accuracy: 0.9913\n",
|
178 |
+
"Epoch 12/15\n",
|
179 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.0410 - accuracy: 0.9874 - val_loss: 0.0276 - val_accuracy: 0.9922\n",
|
180 |
+
"Epoch 13/15\n",
|
181 |
+
"422/422 [==============================] - 1s 3ms/step - loss: 0.0381 - accuracy: 0.9875 - val_loss: 0.0292 - val_accuracy: 0.9912\n",
|
182 |
+
"Epoch 14/15\n",
|
183 |
+
"422/422 [==============================] - 1s 2ms/step - loss: 0.0368 - accuracy: 0.9879 - val_loss: 0.0291 - val_accuracy: 0.9920\n",
|
184 |
+
"Epoch 15/15\n",
|
185 |
+
"422/422 [==============================] - 1s 2ms/step - loss: 0.0356 - accuracy: 0.9888 - val_loss: 0.0257 - val_accuracy: 0.9925\n"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"data": {
|
190 |
+
"text/plain": [
|
191 |
+
"<keras.callbacks.History at 0x1c9d4871f40>"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
"execution_count": 5,
|
195 |
+
"metadata": {},
|
196 |
+
"output_type": "execute_result"
|
197 |
+
}
|
198 |
+
],
|
199 |
+
"source": [
|
200 |
+
"batch_size = 128\n",
|
201 |
+
"epochs = 15\n",
|
202 |
+
"\n",
|
203 |
+
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
|
204 |
+
"\n",
|
205 |
+
"model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "markdown",
|
210 |
+
"metadata": {},
|
211 |
+
"source": [
|
212 |
+
"## Evaluate the Trained Model"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"execution_count": 6,
|
218 |
+
"metadata": {},
|
219 |
+
"outputs": [
|
220 |
+
{
|
221 |
+
"name": "stdout",
|
222 |
+
"output_type": "stream",
|
223 |
+
"text": [
|
224 |
+
"Test loss: 0.026043808087706566\n",
|
225 |
+
"Test accuracy: 0.9907000064849854\n"
|
226 |
+
]
|
227 |
+
}
|
228 |
+
],
|
229 |
+
"source": [
|
230 |
+
"score = model.evaluate(x_test, y_test, verbose=0)\n",
|
231 |
+
"print(\"Test loss:\", score[0])\n",
|
232 |
+
"print(\"Test accuracy:\", score[1])"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 7,
|
238 |
+
"metadata": {},
|
239 |
+
"outputs": [],
|
240 |
+
"source": [
|
241 |
+
"model.save(\"mnist.h5\")"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "markdown",
|
246 |
+
"metadata": {},
|
247 |
+
"source": [
|
248 |
+
"## Example GUI"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"cell_type": "code",
|
253 |
+
"execution_count": 11,
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"name": "stdout",
|
258 |
+
"output_type": "stream",
|
259 |
+
"text": [
|
260 |
+
"4\n"
|
261 |
+
]
|
262 |
+
}
|
263 |
+
],
|
264 |
+
"source": [
|
265 |
+
"from tkinter import *\n",
|
266 |
+
"from PIL import ImageGrab\n",
|
267 |
+
"import imageio\n",
|
268 |
+
"import tkinter.font as font\n",
|
269 |
+
"\n",
|
270 |
+
"class Paint(object):\n",
|
271 |
+
" def __init__(self):\n",
|
272 |
+
" self.root=Tk()\n",
|
273 |
+
" self.root.title('Playing with numbers')\n",
|
274 |
+
" # self.root.wm_iconbitmap('44143.ico')\n",
|
275 |
+
" self.root.configure(background='light salmon')\n",
|
276 |
+
" self.c = Canvas(self.root,bg='light cyan', height=330, width=400)\n",
|
277 |
+
" self.label = Label(self.root, text='Draw any numer', font=20, bg='light salmon')\n",
|
278 |
+
" self.label.grid(row=0, column=3)\n",
|
279 |
+
" self.c.grid(row=1, columnspan=9)\n",
|
280 |
+
" self.c.create_line(0,0,400,0,width=20,fill='midnight blue')\n",
|
281 |
+
" self.c.create_line(0,0,0,330,width=20,fill='midnight blue')\n",
|
282 |
+
" self.c.create_line(400,0,400,330,width=20,fill='midnight blue')\n",
|
283 |
+
" self.c.create_line(0,330,400,330,width=20,fill='midnight blue')\n",
|
284 |
+
" self.myfont = font.Font(size=20,weight='bold')\n",
|
285 |
+
" self.predicting_button=Button(self.root,text='Predict', fg='white', bg='blue', height=2, width=6, font=self.myfont, command=lambda:self.classify(self.c))\n",
|
286 |
+
" self.predicting_button.grid(row=2,column=1)\n",
|
287 |
+
" self.clear=Button(self.root,text='Clear', fg='white', bg='orange', height=2, width=6, font=self.myfont, command=self.clear)\n",
|
288 |
+
" self.clear.grid(row=2,column=5)\n",
|
289 |
+
" self.prediction_text = Text(self.root, height=5, width=5)\n",
|
290 |
+
" self.prediction_text.grid(row=4, column=3)\n",
|
291 |
+
" self.label=Label(self.root, text=\"Predicted Number is\", fg=\"black\", font=30, bg='light salmon')\n",
|
292 |
+
"\n",
|
293 |
+
" self.label.grid(row=3,column=3)\n",
|
294 |
+
" self.model=model\n",
|
295 |
+
" self.setup()\n",
|
296 |
+
" self.root.mainloop()\n",
|
297 |
+
"\n",
|
298 |
+
"\n",
|
299 |
+
" def setup(self):\n",
|
300 |
+
" self.old_x=None\n",
|
301 |
+
" self.old_y=None\n",
|
302 |
+
" self.color='black'\n",
|
303 |
+
" self.linewidth=15\n",
|
304 |
+
" self.c.bind('<B1-Motion>', self.paint)\n",
|
305 |
+
" self.c.bind('<ButtonRelease-1>', self.reset)\n",
|
306 |
+
"\n",
|
307 |
+
"\n",
|
308 |
+
" def paint(self,event):\n",
|
309 |
+
" paint_color=self.color\n",
|
310 |
+
" if self.old_x and self.old_y:\n",
|
311 |
+
" self.c.create_line(self.old_x,self.old_y,event.x,event.y,fill=paint_color,width=self.linewidth,capstyle=ROUND,\n",
|
312 |
+
" smooth=TRUE,splinesteps=48)\n",
|
313 |
+
" self.old_x=event.x\n",
|
314 |
+
" self.old_y=event.y\n",
|
315 |
+
"\n",
|
316 |
+
"\n",
|
317 |
+
" def clear(self):\n",
|
318 |
+
" \"\"\"Clear drawing area\"\"\"\n",
|
319 |
+
" self.c.delete(\"all\")\n",
|
320 |
+
"\n",
|
321 |
+
" def reset(self, event):\n",
|
322 |
+
" \"\"\"reset old_x and old_y if the left mouse button is released\"\"\"\n",
|
323 |
+
" self.old_x, self.old_y = None, None\n",
|
324 |
+
"\n",
|
325 |
+
"\n",
|
326 |
+
" def classify(self,widget):\n",
|
327 |
+
" x=self.root.winfo_rootx()+widget.winfo_x()\n",
|
328 |
+
" y=self.root.winfo_rooty()+widget.winfo_y()\n",
|
329 |
+
" x1=widget.winfo_width()\n",
|
330 |
+
" y1=widget.winfo_height()\n",
|
331 |
+
" ImageGrab.grab().crop((x,y,x1,y1)).resize((28,28)).save('classify.png')\n",
|
332 |
+
" img=imageio.imread('classify.png', as_gray=True, pilmode='P')\n",
|
333 |
+
" img=np.array(img)\n",
|
334 |
+
" img=np.reshape(img,(1,28,28,1))\n",
|
335 |
+
" img[img==0] = 255\n",
|
336 |
+
" img[img==225] = 0\n",
|
337 |
+
" # Predict digit\n",
|
338 |
+
" pred = self.model.predict([img])\n",
|
339 |
+
" # Get index with highest probability\n",
|
340 |
+
" pred = np.argmax(pred)\n",
|
341 |
+
" print(pred)\n",
|
342 |
+
" self.prediction_text.delete(\"1.0\", END)\n",
|
343 |
+
" self.prediction_text.insert(END, pred)\n",
|
344 |
+
" labelfont = ('times', 30, 'bold')\n",
|
345 |
+
" self.prediction_text.config(font=labelfont)\n",
|
346 |
+
"\n",
|
347 |
+
"if __name__ == '__main__':\n",
|
348 |
+
" Paint()"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "code",
|
353 |
+
"execution_count": null,
|
354 |
+
"metadata": {},
|
355 |
+
"outputs": [],
|
356 |
+
"source": []
|
357 |
+
}
|
358 |
+
],
|
359 |
+
"metadata": {
|
360 |
+
"kernelspec": {
|
361 |
+
"display_name": "Python 3.9.7 ('base')",
|
362 |
+
"language": "python",
|
363 |
+
"name": "python3"
|
364 |
+
},
|
365 |
+
"language_info": {
|
366 |
+
"codemirror_mode": {
|
367 |
+
"name": "ipython",
|
368 |
+
"version": 3
|
369 |
+
},
|
370 |
+
"file_extension": ".py",
|
371 |
+
"mimetype": "text/x-python",
|
372 |
+
"name": "python",
|
373 |
+
"nbconvert_exporter": "python",
|
374 |
+
"pygments_lexer": "ipython3",
|
375 |
+
"version": "3.9.7"
|
376 |
+
},
|
377 |
+
"orig_nbformat": 4,
|
378 |
+
"vscode": {
|
379 |
+
"interpreter": {
|
380 |
+
"hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186"
|
381 |
+
}
|
382 |
+
}
|
383 |
+
},
|
384 |
+
"nbformat": 4,
|
385 |
+
"nbformat_minor": 2
|
386 |
+
}
|