File size: 1,924 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

import torch

from torch.utils.cpp_extension import load
cd = load(name="build",
          sources=["pyTorchChamferDistance/chamfer_distance/chamfer_distance.cpp",
                   "pyTorchChamferDistance/chamfer_distance/chamfer_distance.cu"],
          build_directory="pyTorchChamferDistance/build")

class ChamferDistanceFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, xyz1, xyz2):
        batchsize, n, _ = xyz1.size()
        _, m, _ = xyz2.size()
        xyz1 = xyz1.contiguous()
        xyz2 = xyz2.contiguous()
        dist1 = torch.zeros(batchsize, n)
        dist2 = torch.zeros(batchsize, m)

        idx1 = torch.zeros(batchsize, n, dtype=torch.int)
        idx2 = torch.zeros(batchsize, m, dtype=torch.int)

        if not xyz1.is_cuda:
            cd.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
        else:
            dist1 = dist1.cuda()
            dist2 = dist2.cuda()
            idx1 = idx1.cuda()
            idx2 = idx2.cuda()
            cd.forward_cuda(xyz1, xyz2, dist1, dist2, idx1, idx2)

        ctx.save_for_backward(xyz1, xyz2, idx1, idx2)

        return dist1, dist2, idx1, idx2

    @staticmethod
    def backward(ctx, graddist1, graddist2, *args):
        xyz1, xyz2, idx1, idx2 = ctx.saved_tensors

        graddist1 = graddist1.contiguous()
        graddist2 = graddist2.contiguous()

        gradxyz1 = torch.zeros(xyz1.size())
        gradxyz2 = torch.zeros(xyz2.size())

        if not graddist1.is_cuda:
            cd.backward(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2)
        else:
            gradxyz1 = gradxyz1.cuda()
            gradxyz2 = gradxyz2.cuda()
            cd.backward_cuda(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2)

        return gradxyz1, gradxyz2


class ChamferDistance(torch.nn.Module):
    def forward(self, xyz1, xyz2):
        return ChamferDistanceFunction.apply(xyz1, xyz2)