File size: 13,723 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import argparse
import sys
sys.path.append("..")
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter

import util.misc as misc
from datasets import build_dataset
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from models import get_model,get_criterion

from engine.engine_triplane_dm import train_one_epoch,evaluate_reconstruction

def get_args_parser():
    parser = argparse.ArgumentParser('Latent Diffusion', add_help=False)
    parser.add_argument('--batch_size', default=64, type=int,
                        help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
    parser.add_argument('--epochs', default=800, type=int)
    parser.add_argument('--accum_iter', default=1, type=int,
                        help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')

    parser.add_argument('--ae-pth',type=str)
    # Optimizer parameters
    parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
                        help='Clip gradient norm (default: None, no clipping)')
    parser.add_argument('--weight_decay', type=float, default=0.05,
                        help='weight decay (default: 0.05)')

    parser.add_argument('--lr', type=float, default=None, metavar='LR',
                        help='learning rate (absolute lr)')
    parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',  # 2e-4
                        help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
    parser.add_argument('--layer_decay', type=float, default=0.75,
                        help='layer-wise lr decay from ELECTRA/BEiT')

    parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0')

    parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
                        help='epochs to warmup LR')
    # Dataset parameters
    parser.add_argument('--data-pth', default='../data', type=str,
                        help='dataset path')

    parser.add_argument('--output_dir', default='./output/',
                        help='path where to save, empty for no saving')
    parser.add_argument('--log_dir', default='./output/',
                        help='path where to tensorboard log')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='',
                        help='resume from checkpoint')

    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--eval', action='store_true',
                        help='Perform evaluation only')
    parser.add_argument('--dist_eval', action='store_true', default=False,
                        help='Enabling distributed evaluation (recommended during training for faster monitor')
    parser.add_argument('--num_workers', default=60, type=int)
    parser.add_argument('--pin_mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
    parser.set_defaults(pin_mem=True)
    parser.add_argument('--constant_lr', default=False, action='store_true')

    # distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://',
                        help='url used to set up distributed training')
    parser.add_argument('--load_proj_mat',default=True,type=bool)
    parser.add_argument('--num_objects',type=int,default=-1)

    parser.add_argument('--configs', type=str)
    parser.add_argument('--finetune', default=False, action="store_true")
    parser.add_argument('--finetune-pth', type=str)
    parser.add_argument('--use_cls_free',action="store_true",default=False)
    parser.add_argument('--sync_bn',action="store_true",default=False)
    parser.add_argument('--category',type=str)
    parser.add_argument('--stop',type=int,default=1000)
    parser.add_argument('--replica', type=int, default=5)

    return parser


def main(args,config):
    misc.init_distributed_mode(args)

    print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
    print("{}".format(args).replace(', ', ',\n'))

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + misc.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)

    cudnn.benchmark = True

    dataset_config = config.config['dataset']
    dataset_config['category']=args.category
    dataset_config['replica']=args.replica
    dataset_config['num_objects']=args.num_objects
    dataset_config['data_path']=args.data_pth
    dataset_train = build_dataset('train', dataset_config)
    print("training dataset len is %d"%(len(dataset_train)))
    dataset_val=build_dataset('val', dataset_config)
    #dataset_val = build_dataset('val', dataset_config)

    if True:  # args.distributed:
        num_tasks = misc.get_world_size()
        global_rank = misc.get_rank()
        sampler_train = torch.utils.data.DistributedSampler(
            dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
        )
        print("Sampler_train = %s" % str(sampler_train))
        if args.dist_eval:
            if len(dataset_val) % num_tasks != 0:
                print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
                      'This will slightly alter validation results as extra duplicate entries are added to achieve '
                      'equal num of samples per-process.')
            sampler_val = torch.utils.data.DistributedSampler(
                dataset_val, num_replicas=num_tasks, rank=global_rank,
                shuffle=True)  # shuffle=True to reduce monitor bias
        else:
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    if global_rank == 0 and args.log_dir is not None and not args.eval:
        os.makedirs(args.log_dir, exist_ok=True)
        log_writer = SummaryWriter(log_dir=args.log_dir)
    else:
        log_writer = None

    if misc.get_rank()==0:
        log_dir=args.log_dir
        src_folder="/data1/haolin/TriplaneDiffusion"
        misc.log_codefiles(src_folder,log_dir+"/code_bak")
        #cmd="cp -r %s %s"%(src_folder,log_dir+"/code_bak")
        #print(cmd)
        #os.system(cmd)
        config_dict=vars(args)
        config_save_path=os.path.join(log_dir,"config.json")
        with open(config_save_path,'w') as f:
            json.dump(config_dict,f,indent=4)

        model_dict=config
        model_config_save_path=os.path.join(log_dir,"model.json")
        config.write_config(model_config_save_path)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train, sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
        prefetch_factor=2,
    )

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val, sampler=sampler_val,
        # batch_size=args.batch_size,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=False
    )

    ae_args=config.config['model']['ae']
    ae = get_model(ae_args)
    ae.eval()
    print("Loading autoencoder %s" % args.ae_pth)
    ae.load_state_dict(torch.load(args.ae_pth, map_location='cpu')['model'])
    ae.to(device)

    dm_args=config.config['model']['dm']
    if args.category[0] == "all":
        dm_args["use_cat_embedding"]=True
    else:
        dm_args["use_cat_embedding"] = False
    dm_model = get_model(dm_args)
    if args.sync_bn:
        dm_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(dm_model)
    if args.finetune:
        print("finetune the model, load from %s"%(args.finetune_pth))
        dm_model.load_state_dict(torch.load(args.finetune_pth,map_location="cpu")['model'])
    dm_model.to(device)

    model_without_ddp = dm_model
    n_parameters = sum(p.numel() for p in dm_model.parameters() if p.requires_grad)

    print("Model = %s" % str(model_without_ddp))
    print('number of params (M): %.2f' % (n_parameters / 1.e6))

    eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()

    if args.lr is None:  # only base_lr is specified
        args.lr = args.blr * eff_batch_size / 256

    print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
    print("actual lr: %.2e" % args.lr)

    print("accumulate grad iterations: %d" % args.accum_iter)
    print("effective batch size: %d" % eff_batch_size)

    if args.distributed:
        dm_model = torch.nn.parallel.DistributedDataParallel(dm_model, device_ids=[args.gpu], find_unused_parameters=False)
        model_without_ddp = dm_model.module

    # # build optimizer with layer-wise lr decay (lrd)
    # param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
    #     no_weight_decay_list=model_without_ddp.no_weight_decay(),
    #     layer_decay=args.layer_decay
    # )
    optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr)
    loss_scaler = NativeScaler()

    cri_args=config.config['criterion']
    criterion = get_criterion(cri_args)

    print("criterion = %s" % str(criterion))

    misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)

    if args.eval:
        test_stats = evaluate(data_loader_val, dm_model, device)
        print(f"loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.3f}")
        exit(0)

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    min_loss = 1000.0
    max_iou=0

    stop_epochs=min(args.stop,args.epochs)
    for epoch in range(args.start_epoch, stop_epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)
        #test_stats = evaluate_reconstruction(data_loader_val, dm_model, ae, criterion, device)
        train_stats = train_one_epoch(
            dm_model, ae, criterion, data_loader_train,
            optimizer, device, epoch, loss_scaler,
            args.clip_grad,
            log_writer=log_writer,
            log_dir=args.log_dir,
            args=args
        )
        if args.output_dir and (epoch % 5 == 0 or epoch + 1 == args.epochs):
            misc.save_model(
                args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                loss_scaler=loss_scaler, epoch=epoch,prefix="latest")

        if epoch % 5 == 0 or epoch + 1 == args.epochs:
            test_stats = evaluate_reconstruction(data_loader_val, dm_model, ae, criterion, device)
            print(f"iou of the network on the {len(dataset_val)} test images: {test_stats['iou']:.3f}")
            # print(f"loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.3f}")

            if test_stats["iou"] > max_iou:
                max_iou = test_stats["iou"]
                misc.save_model(
                    args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                    loss_scaler=loss_scaler, epoch=epoch, prefix='best')
            else:
                misc.save_model(
                    args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                    loss_scaler=loss_scaler, epoch=epoch, prefix='latest')

            if log_writer is not None:
                log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch)
                log_writer.add_scalar('perf/test_iou', test_stats['iou'], epoch)
                log_writer.add_scalar('perf/test_accuracy', test_stats['accuracy'], epoch)

            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         **{f'test_{k}': v for k, v in test_stats.items()},
                         'epoch': epoch,
                         'n_parameters': n_parameters}
        else:
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         'epoch': epoch,
                         'n_parameters': n_parameters}

        if args.output_dir and misc.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == '__main__':
    args = get_args_parser()
    args = args.parse_args()
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    config_path = args.configs
    from configs.config_utils import CONFIG

    config = CONFIG(config_path)
    main(args,config)