File size: 13,723 Bytes
cc9780d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import argparse
import sys
sys.path.append("..")
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import util.misc as misc
from datasets import build_dataset
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from models import get_model,get_criterion
from engine.engine_triplane_dm import train_one_epoch,evaluate_reconstruction
def get_args_parser():
parser = argparse.ArgumentParser('Latent Diffusion', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=800, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--ae-pth',type=str)
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR', # 2e-4
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data-pth', default='../data', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='./output/',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output/',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=60, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--constant_lr', default=False, action='store_true')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--load_proj_mat',default=True,type=bool)
parser.add_argument('--num_objects',type=int,default=-1)
parser.add_argument('--configs', type=str)
parser.add_argument('--finetune', default=False, action="store_true")
parser.add_argument('--finetune-pth', type=str)
parser.add_argument('--use_cls_free',action="store_true",default=False)
parser.add_argument('--sync_bn',action="store_true",default=False)
parser.add_argument('--category',type=str)
parser.add_argument('--stop',type=int,default=1000)
parser.add_argument('--replica', type=int, default=5)
return parser
def main(args,config):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_config = config.config['dataset']
dataset_config['category']=args.category
dataset_config['replica']=args.replica
dataset_config['num_objects']=args.num_objects
dataset_config['data_path']=args.data_pth
dataset_train = build_dataset('train', dataset_config)
print("training dataset len is %d"%(len(dataset_train)))
dataset_val=build_dataset('val', dataset_config)
#dataset_val = build_dataset('val', dataset_config)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank,
shuffle=True) # shuffle=True to reduce monitor bias
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
if misc.get_rank()==0:
log_dir=args.log_dir
src_folder="/data1/haolin/TriplaneDiffusion"
misc.log_codefiles(src_folder,log_dir+"/code_bak")
#cmd="cp -r %s %s"%(src_folder,log_dir+"/code_bak")
#print(cmd)
#os.system(cmd)
config_dict=vars(args)
config_save_path=os.path.join(log_dir,"config.json")
with open(config_save_path,'w') as f:
json.dump(config_dict,f,indent=4)
model_dict=config
model_config_save_path=os.path.join(log_dir,"model.json")
config.write_config(model_config_save_path)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
prefetch_factor=2,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
# batch_size=args.batch_size,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
ae_args=config.config['model']['ae']
ae = get_model(ae_args)
ae.eval()
print("Loading autoencoder %s" % args.ae_pth)
ae.load_state_dict(torch.load(args.ae_pth, map_location='cpu')['model'])
ae.to(device)
dm_args=config.config['model']['dm']
if args.category[0] == "all":
dm_args["use_cat_embedding"]=True
else:
dm_args["use_cat_embedding"] = False
dm_model = get_model(dm_args)
if args.sync_bn:
dm_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(dm_model)
if args.finetune:
print("finetune the model, load from %s"%(args.finetune_pth))
dm_model.load_state_dict(torch.load(args.finetune_pth,map_location="cpu")['model'])
dm_model.to(device)
model_without_ddp = dm_model
n_parameters = sum(p.numel() for p in dm_model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
dm_model = torch.nn.parallel.DistributedDataParallel(dm_model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = dm_model.module
# # build optimizer with layer-wise lr decay (lrd)
# param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
# no_weight_decay_list=model_without_ddp.no_weight_decay(),
# layer_decay=args.layer_decay
# )
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr)
loss_scaler = NativeScaler()
cri_args=config.config['criterion']
criterion = get_criterion(cri_args)
print("criterion = %s" % str(criterion))
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
test_stats = evaluate(data_loader_val, dm_model, device)
print(f"loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.3f}")
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
min_loss = 1000.0
max_iou=0
stop_epochs=min(args.stop,args.epochs)
for epoch in range(args.start_epoch, stop_epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
#test_stats = evaluate_reconstruction(data_loader_val, dm_model, ae, criterion, device)
train_stats = train_one_epoch(
dm_model, ae, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad,
log_writer=log_writer,
log_dir=args.log_dir,
args=args
)
if args.output_dir and (epoch % 5 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch,prefix="latest")
if epoch % 5 == 0 or epoch + 1 == args.epochs:
test_stats = evaluate_reconstruction(data_loader_val, dm_model, ae, criterion, device)
print(f"iou of the network on the {len(dataset_val)} test images: {test_stats['iou']:.3f}")
# print(f"loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.3f}")
if test_stats["iou"] > max_iou:
max_iou = test_stats["iou"]
misc.save_model(
args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, prefix='best')
else:
misc.save_model(
args=args, model=dm_model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, prefix='latest')
if log_writer is not None:
log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch)
log_writer.add_scalar('perf/test_iou', test_stats['iou'], epoch)
log_writer.add_scalar('perf/test_accuracy', test_stats['accuracy'], epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
config_path = args.configs
from configs.config_utils import CONFIG
config = CONFIG(config_path)
main(args,config)
|