File size: 12,850 Bytes
18bb538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import numpy as np
import os
import argparse
import open3d as o3d
import glob
import cv2
import copy

def get_roll_rot(angle):
    ca=np.cos(angle)
    sa=np.sin(angle)
    rot=np.array([
        [ca,-sa,0,0],
        [sa,ca,0,0],
        [0,0,1,0],
        [0,0,0,1]
    ])
    return rot
def rotate_mat(direction):
    if direction == 'Up':
        return np.eye(4)
    elif direction == 'Left':
        rot_mat=get_roll_rot(np.pi/2)
    elif direction == 'Right':
        rot_mat=get_roll_rot(-np.pi/2)
    elif direction == 'Down':
        rot_mat=get_roll_rot(np.pi)
    else:
        raise Exception(f'No such direction (={direction}) rotation')
    return rot_mat

def rotate_K(K,direction):
    if direction == 'Up' or direction=="Down":
        new_K4=np.eye(4)
        new_K4[0:3,0:3]=copy.deepcopy(K)
        return new_K4
    elif direction == 'Left' or direction =="Right":
        fx,fy,cx,cy=K[0,0],K[1,1],K[0,2],K[1,2]
        new_K4 = np.array([
            [fy, 0, cy, 0],
            [0, fx, cx, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 1]
        ])
        return new_K4

def rotate_bbox(bbox,direction, H,W):

    x_min,y_min,x_max,y_max=bbox[0:4]
    if direction == 'Up':
        return bbox
    elif direction == 'Left':
        #print(W-bbox[1],W-bbox[3])
        new_bbox=[min(H-bbox[1],H-bbox[3]),bbox[0],max(H-bbox[1],H-bbox[3]),bbox[2]]
    elif direction == 'Right':
        new_bbox=[bbox[1],min(W-bbox[0],W-bbox[2]),bbox[3],max(W-bbox[0],W-bbox[2])]
    elif direction == 'Down':
        new_bbox=[min(W-x_min,W-x_max),min(H-y_min,H-y_max),max(W-x_min,W-x_max),max(H-y_min,H-y_max)]
    else:
        raise Exception(f'No such direction (={direction}) rotation')
    return new_bbox

def rotate_image(img, direction):
    if direction == 'Up':
        pass
    elif direction == 'Left':
        img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
    elif direction == 'Right':
        img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
    elif direction == 'Down':
        img = cv2.rotate(img, cv2.ROTATE_180)
    else:
        raise Exception(f'No such direction (={direction}) rotation')
    return img

parser=argparse.ArgumentParser()
parser.add_argument("--data_folder",type=str,required=True)
parser.add_argument("--save_dir",type=str,default=r"../example_process_data")
parser.add_argument("--debug",action="store_true",default=False)
args=parser.parse_args()

print("processing %s"%(args.data_folder))

data_folder=args.data_folder
scene_name=os.path.basename(data_folder)
save_folder=os.path.join(args.save_dir,scene_name)
os.makedirs(save_folder,exist_ok=True)
color_folder=os.path.join(data_folder,"color")
depth_folder=os.path.join(data_folder,"depth")
pose_folder=os.path.join(data_folder,"pose")

print(color_folder)

color_list=glob.glob(color_folder+"/*.jpg")
image_id_list=[os.path.basename(item)[0:-4] for item in color_list]
image_id_list.sort()

bbox_path=os.path.join(data_folder,"objects.npy")
bboxes_dict=np.load(bbox_path,allow_pickle=True).item()

intrinsic_path=os.path.join(data_folder,"intrinsic","intrinsic_color.txt")
K=np.loadtxt(intrinsic_path)

align_path=os.path.join(data_folder,"alignment_matrix.txt")
align_matrix=np.loadtxt(align_path)
if align_matrix.shape[0]==3:
    new_align_matrix=np.eye(4)
    new_align_matrix[0:3,0:3]=align_matrix
    align_matrix=new_align_matrix

mesh_path=os.path.join(data_folder,"fused_mesh.ply")
o3d_mesh=o3d.io.read_triangle_mesh(mesh_path)
o3d_vertices = np.array(o3d_mesh.vertices)
o3d_vert_homo=np.concatenate([o3d_vertices,np.ones([o3d_vertices.shape[0],1])],axis=1)
align_o3d_vertices = np.dot(o3d_vert_homo,align_matrix)[:,0:3]
o3d_mesh.vertices = o3d.utility.Vector3dVector(align_o3d_vertices)
align_mesh_save_path=os.path.join(save_folder,"align_mesh.ply")
o3d.io.write_triangle_mesh(align_mesh_save_path,o3d_mesh)

x=np.linspace(-1,1,10)
y=np.linspace(-1,1,10)
z=np.linspace(-1,1,10)
X,Y,Z=np.meshgrid(x,y,z,indexing='ij')
vox_coor=np.concatenate([X[:,:,:,np.newaxis],Y[:,:,:,np.newaxis],Z[:,:,:,np.newaxis]],axis=-1)
vox_coor=np.reshape(vox_coor,(-1,3))
#print(np.amin(vox_coor,axis=0),np.amax(vox_coor,axis=0))

pre_proj_mates={}
obj_points_dict={}
trans_mats={}
point_save_folder=os.path.join(save_folder,"5_partial_points")
os.makedirs(point_save_folder,exist_ok=True)
tran_save_folder=os.path.join(save_folder,"10_tran_matrix")
os.makedirs(tran_save_folder,exist_ok=True)
for object_id in bboxes_dict:
    object = bboxes_dict[object_id]
    category = object['category']
    sizes = object['size']
    sizes *= 1.1
    transform_matrix_t = np.array(object['transform']).reshape([4, 4])
    translate = transform_matrix_t[:3, 3]
    rotation = transform_matrix_t[:3, :3]

    bbox_o3d = o3d.geometry.OrientedBoundingBox(translate.reshape([3, 1]),
                                                rotation,
                                                np.array(sizes).reshape([3, 1]))
    crop_pcd = o3d_mesh.crop(bbox_o3d)
    crop_vert = np.asarray(crop_pcd.vertices)
    org_crop_vert = crop_vert[:, :]
    crop_vert = crop_vert - translate
    crop_vert = np.dot(crop_vert,np.linalg.inv(rotation).T)
    crop_vert[:, 2] *= -1
    bb_min, bb_max = np.amin(crop_vert, axis=0), np.amax(crop_vert, axis=0)
    max_length = (bb_max - bb_min).max()
    center = (bb_max + bb_min) / 2
    crop_vert = (crop_vert - center) / max_length * 2

    obj_points_dict[object_id]=crop_vert
    crop_pcd.vertices=o3d.utility.Vector3dVector(crop_vert)
    save_path=os.path.join(point_save_folder,category+"_%d.ply"%(object_id))
    o3d.io.write_triangle_mesh(save_path,crop_pcd)

    proj_mat = np.eye(4)
    scale_tran = np.eye(4)
    scale_tran[0, 0], scale_tran[1, 1], scale_tran[2, 2] = max_length / 2, max_length / 2, max_length / 2
    proj_mat = np.dot(proj_mat, scale_tran)
    center_tran = np.eye(4)
    center_tran[0:3, 3] = center
    proj_mat = np.dot(center_tran, proj_mat)
    invert_mat = np.eye(4)
    invert_mat[2, 2] *= -1
    proj_mat = np.dot(invert_mat, proj_mat)
    proj_mat[0:3, 0:3] = np.dot(rotation,proj_mat[0:3, 0:3])
    translate_mat = np.eye(4)
    translate_mat[0:3, 3] = translate
    proj_mat = np.dot(translate_mat, proj_mat)

    '''tran mat is to align output to scene space'''
    tran_mat=copy.deepcopy(proj_mat)
    trans_mats[object_id]=tran_mat
    tran_save_path=os.path.join(tran_save_folder,category+"_%d.npy"%(object_id))
    np.save(tran_save_path,tran_mat)

    unalign_mat = np.linalg.inv(align_matrix)
    proj_mat = np.dot(unalign_mat.T, proj_mat)
    pre_proj_mates[object_id]=proj_mat

ref=np.array([
            [0,1.0], #Up
            [-1.0,0],#Left
            [0,1.0], #Right
            [0.0,-1.0] #Down
        ]) #4*2
dir_list=[
    "Down",
    "Left",
    "Right",
    "Up"
]

for image_id in image_id_list:
    color_path=os.path.join(color_folder,image_id+".jpg")
    depth_path=os.path.join(depth_folder,image_id+".png")
    pose_path=os.path.join(pose_folder,image_id+".txt")

    color=cv2.imread(color_path)
    height,width=color.shape[0:2]
    depth=cv2.imread(depth_path,cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH)/1000.0
    pose=np.loadtxt(pose_path)
    for object_id in bboxes_dict:
        object=bboxes_dict[object_id]
        category=object['category']
        sizes=object['size']
        object_vox_coor=vox_coor*sizes[np.newaxis,:]
        #print(np.amin(object_vox_coor,axis=0),np.amax(object_vox_coor,axis=0))
        #print(sizes)

        prev_proj_mat=pre_proj_mates[object_id]
        wrd2cam_pose = np.linalg.inv(pose)
        current_proj_mat = np.dot(wrd2cam_pose, prev_proj_mat)
        K4=np.eye(4)
        K4[0:3,0:3]=K

        '''calibrate proj_mat'''
        up_vectors = np.array([[0, 0, 0, 1.0],
                               [0, 0.5, 0, 1.0]])
        up_vec_inimg = np.dot(up_vectors, current_proj_mat.T)
        up_vec_inimg = np.dot(up_vec_inimg,K4.T)
        up_x = up_vec_inimg[:, 0] / up_vec_inimg[:, 2]
        up_y = up_vec_inimg[:, 1] / up_vec_inimg[:, 2]
        pt1 = np.array((up_x[0], up_y[0]))
        pt2 = np.array((up_x[1], up_y[1]))
        up_dir = pt2 - pt1
        # print(up_dir)

        product = np.sum(up_dir[np.newaxis, :] * ref, axis=1)
        max_ind = np.argmax(product)
        direction = dir_list[max_ind]
        sky_rot = rotate_mat(direction)
        #final_proj_mat = np.dot(K4,final_proj_mat)

        vox_homo=np.concatenate([object_vox_coor,np.ones((object_vox_coor.shape[0],1))],axis=1)
        vox_proj=np.dot(vox_homo,current_proj_mat.T)
        vox_proj=np.dot(vox_proj,K4.T)
        vox_x=vox_proj[:,0]/vox_proj[:,2]
        vox_y=vox_proj[:,1]/vox_proj[:,2]

        if np.mean(vox_proj[:,2])>5:
            continue

        inside_mask=((vox_x<width-1) &(vox_x>0) &(vox_y<height-1) &(vox_y>0)).astype(np.float32)
        infrustum_ratio=np.sum(inside_mask)/vox_x.shape[0]
        if infrustum_ratio < 0.4 and category in ["chair", "stool"]:
            continue
        elif infrustum_ratio <0.2:
            continue
        #print(object_id,image_id,infrustum_ratio)

        '''objects visibility check for every frame'''
        vox_x_inside=vox_x[inside_mask>0].astype(np.int32)
        vox_y_inside=vox_y[inside_mask>0].astype(np.int32)
        vox_depth=vox_proj[inside_mask>0,2]
        #print(depth.shape,np.amax(vox_y_inside),np.amax(vox_x_inside))
        depth_sample=depth[vox_y_inside,vox_x_inside]
        depth_mask=(depth_sample>0)&(depth_sample<10.0)
        depth_sample=depth_sample[depth_mask]
        vox_depth=vox_depth[depth_mask]

        if vox_depth.shape[0]<100:
            continue

        occluded_ratio=np.sum(((vox_depth-depth_sample)>0.2).astype(np.float32))/vox_depth.shape[0]
        if occluded_ratio>0.6 and category in ["chair"]: #chair is easily occluded, while table is not
            continue

        depth_near_ratio = np.sum((np.abs(vox_depth - depth_sample) < sizes.max() * 0.5).astype(np.float32)) / \
                           vox_depth.shape[0]
        if depth_near_ratio < 0.2:
            continue

        '''make sure in every image, the object is upward'''
        bbox=(np.amin(vox_x_inside),np.amin(vox_y_inside),np.amax(vox_x_inside),np.amax(vox_y_inside))
        rot_image=rotate_image(color,direction)
        bbox = rotate_bbox(bbox, direction, height, width)
        crop_image=rot_image[bbox[1]:bbox[3],bbox[0]:bbox[2]]
        crop_h, crop_w = crop_image.shape[0:2]
        max_length = max(crop_h, crop_w)
        if max_length<100:
            continue
        pad_image = np.zeros((max_length, max_length, 3))
        if crop_h > crop_w:
            margin = crop_h - crop_w
            pad_image[:, margin // 2:margin // 2 + crop_w] = crop_image[:, :, :]
            x_start, x_end = bbox[0] - margin // 2, margin // 2 + bbox[2]
            y_start, y_end = bbox[1], bbox[3]
        else:
            margin = crop_w - crop_h
            pad_image[margin // 2:margin // 2 + crop_h, :] = crop_image[:, :, :]

            y_start, y_end = bbox[1] - margin // 2, bbox[3] + margin // 2
            x_start, x_end = bbox[0], bbox[2]

        pad_image=cv2.resize(pad_image,dsize=(224,224),interpolation=cv2.INTER_LINEAR)
        image_save_folder = os.path.join(save_folder, "6_images", category + "_%d" % (object_id))
        os.makedirs(image_save_folder, exist_ok=True)
        image_save_path=os.path.join(image_save_folder,image_id+".jpg")
        #print("saving to %s"%(image_save_path))
        cv2.imwrite(image_save_path,pad_image)

        proj_mat=np.dot(sky_rot,current_proj_mat)
        new_K4 = rotate_K(K, direction)
        new_K4[0, 2] -= x_start
        new_K4[1, 2] -= y_start
        new_K4[0] = new_K4[0] / max_length * 224
        new_K4[1] = new_K4[1] / max_length * 224
        proj_mat = np.dot(new_K4, proj_mat)

        proj_save_folder=os.path.join(save_folder,"8_proj_matrix",category+"_%d"%(object_id))
        os.makedirs(proj_save_folder,exist_ok=True)
        proj_save_path=os.path.join(proj_save_folder,image_id+".npy")
        np.save(proj_save_path,proj_mat)

        '''debug proj matrix'''
        if args.debug:
            proj_save_folder=os.path.join(save_folder,"9_proj_images",category+"_%d"%(object_id))
            os.makedirs(proj_save_folder,exist_ok=True)
            canvas=copy.deepcopy(pad_image)
            par_points=obj_points_dict[object_id]
            par_homo=np.concatenate([par_points,np.ones((par_points.shape[0],1))],axis=1)
            par_inimg=np.dot(par_homo,proj_mat.T)
            x=par_inimg[:,0]/par_inimg[:,2]
            y=par_inimg[:,1]/par_inimg[:,2]
            x=np.clip(x,a_min=0,a_max=223).astype(np.int32)
            y=np.clip(y,a_min=0,a_max=223).astype(np.int32)
            canvas[y,x]=np.array([[0,255,0]])
            proj_save_path=os.path.join(proj_save_folder,image_id+".jpg")
            cv2.imwrite(proj_save_path,canvas)