File size: 12,850 Bytes
18bb538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import numpy as np
import os
import argparse
import open3d as o3d
import glob
import cv2
import copy
def get_roll_rot(angle):
ca=np.cos(angle)
sa=np.sin(angle)
rot=np.array([
[ca,-sa,0,0],
[sa,ca,0,0],
[0,0,1,0],
[0,0,0,1]
])
return rot
def rotate_mat(direction):
if direction == 'Up':
return np.eye(4)
elif direction == 'Left':
rot_mat=get_roll_rot(np.pi/2)
elif direction == 'Right':
rot_mat=get_roll_rot(-np.pi/2)
elif direction == 'Down':
rot_mat=get_roll_rot(np.pi)
else:
raise Exception(f'No such direction (={direction}) rotation')
return rot_mat
def rotate_K(K,direction):
if direction == 'Up' or direction=="Down":
new_K4=np.eye(4)
new_K4[0:3,0:3]=copy.deepcopy(K)
return new_K4
elif direction == 'Left' or direction =="Right":
fx,fy,cx,cy=K[0,0],K[1,1],K[0,2],K[1,2]
new_K4 = np.array([
[fy, 0, cy, 0],
[0, fx, cx, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
return new_K4
def rotate_bbox(bbox,direction, H,W):
x_min,y_min,x_max,y_max=bbox[0:4]
if direction == 'Up':
return bbox
elif direction == 'Left':
#print(W-bbox[1],W-bbox[3])
new_bbox=[min(H-bbox[1],H-bbox[3]),bbox[0],max(H-bbox[1],H-bbox[3]),bbox[2]]
elif direction == 'Right':
new_bbox=[bbox[1],min(W-bbox[0],W-bbox[2]),bbox[3],max(W-bbox[0],W-bbox[2])]
elif direction == 'Down':
new_bbox=[min(W-x_min,W-x_max),min(H-y_min,H-y_max),max(W-x_min,W-x_max),max(H-y_min,H-y_max)]
else:
raise Exception(f'No such direction (={direction}) rotation')
return new_bbox
def rotate_image(img, direction):
if direction == 'Up':
pass
elif direction == 'Left':
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
elif direction == 'Right':
img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif direction == 'Down':
img = cv2.rotate(img, cv2.ROTATE_180)
else:
raise Exception(f'No such direction (={direction}) rotation')
return img
parser=argparse.ArgumentParser()
parser.add_argument("--data_folder",type=str,required=True)
parser.add_argument("--save_dir",type=str,default=r"../example_process_data")
parser.add_argument("--debug",action="store_true",default=False)
args=parser.parse_args()
print("processing %s"%(args.data_folder))
data_folder=args.data_folder
scene_name=os.path.basename(data_folder)
save_folder=os.path.join(args.save_dir,scene_name)
os.makedirs(save_folder,exist_ok=True)
color_folder=os.path.join(data_folder,"color")
depth_folder=os.path.join(data_folder,"depth")
pose_folder=os.path.join(data_folder,"pose")
print(color_folder)
color_list=glob.glob(color_folder+"/*.jpg")
image_id_list=[os.path.basename(item)[0:-4] for item in color_list]
image_id_list.sort()
bbox_path=os.path.join(data_folder,"objects.npy")
bboxes_dict=np.load(bbox_path,allow_pickle=True).item()
intrinsic_path=os.path.join(data_folder,"intrinsic","intrinsic_color.txt")
K=np.loadtxt(intrinsic_path)
align_path=os.path.join(data_folder,"alignment_matrix.txt")
align_matrix=np.loadtxt(align_path)
if align_matrix.shape[0]==3:
new_align_matrix=np.eye(4)
new_align_matrix[0:3,0:3]=align_matrix
align_matrix=new_align_matrix
mesh_path=os.path.join(data_folder,"fused_mesh.ply")
o3d_mesh=o3d.io.read_triangle_mesh(mesh_path)
o3d_vertices = np.array(o3d_mesh.vertices)
o3d_vert_homo=np.concatenate([o3d_vertices,np.ones([o3d_vertices.shape[0],1])],axis=1)
align_o3d_vertices = np.dot(o3d_vert_homo,align_matrix)[:,0:3]
o3d_mesh.vertices = o3d.utility.Vector3dVector(align_o3d_vertices)
align_mesh_save_path=os.path.join(save_folder,"align_mesh.ply")
o3d.io.write_triangle_mesh(align_mesh_save_path,o3d_mesh)
x=np.linspace(-1,1,10)
y=np.linspace(-1,1,10)
z=np.linspace(-1,1,10)
X,Y,Z=np.meshgrid(x,y,z,indexing='ij')
vox_coor=np.concatenate([X[:,:,:,np.newaxis],Y[:,:,:,np.newaxis],Z[:,:,:,np.newaxis]],axis=-1)
vox_coor=np.reshape(vox_coor,(-1,3))
#print(np.amin(vox_coor,axis=0),np.amax(vox_coor,axis=0))
pre_proj_mates={}
obj_points_dict={}
trans_mats={}
point_save_folder=os.path.join(save_folder,"5_partial_points")
os.makedirs(point_save_folder,exist_ok=True)
tran_save_folder=os.path.join(save_folder,"10_tran_matrix")
os.makedirs(tran_save_folder,exist_ok=True)
for object_id in bboxes_dict:
object = bboxes_dict[object_id]
category = object['category']
sizes = object['size']
sizes *= 1.1
transform_matrix_t = np.array(object['transform']).reshape([4, 4])
translate = transform_matrix_t[:3, 3]
rotation = transform_matrix_t[:3, :3]
bbox_o3d = o3d.geometry.OrientedBoundingBox(translate.reshape([3, 1]),
rotation,
np.array(sizes).reshape([3, 1]))
crop_pcd = o3d_mesh.crop(bbox_o3d)
crop_vert = np.asarray(crop_pcd.vertices)
org_crop_vert = crop_vert[:, :]
crop_vert = crop_vert - translate
crop_vert = np.dot(crop_vert,np.linalg.inv(rotation).T)
crop_vert[:, 2] *= -1
bb_min, bb_max = np.amin(crop_vert, axis=0), np.amax(crop_vert, axis=0)
max_length = (bb_max - bb_min).max()
center = (bb_max + bb_min) / 2
crop_vert = (crop_vert - center) / max_length * 2
obj_points_dict[object_id]=crop_vert
crop_pcd.vertices=o3d.utility.Vector3dVector(crop_vert)
save_path=os.path.join(point_save_folder,category+"_%d.ply"%(object_id))
o3d.io.write_triangle_mesh(save_path,crop_pcd)
proj_mat = np.eye(4)
scale_tran = np.eye(4)
scale_tran[0, 0], scale_tran[1, 1], scale_tran[2, 2] = max_length / 2, max_length / 2, max_length / 2
proj_mat = np.dot(proj_mat, scale_tran)
center_tran = np.eye(4)
center_tran[0:3, 3] = center
proj_mat = np.dot(center_tran, proj_mat)
invert_mat = np.eye(4)
invert_mat[2, 2] *= -1
proj_mat = np.dot(invert_mat, proj_mat)
proj_mat[0:3, 0:3] = np.dot(rotation,proj_mat[0:3, 0:3])
translate_mat = np.eye(4)
translate_mat[0:3, 3] = translate
proj_mat = np.dot(translate_mat, proj_mat)
'''tran mat is to align output to scene space'''
tran_mat=copy.deepcopy(proj_mat)
trans_mats[object_id]=tran_mat
tran_save_path=os.path.join(tran_save_folder,category+"_%d.npy"%(object_id))
np.save(tran_save_path,tran_mat)
unalign_mat = np.linalg.inv(align_matrix)
proj_mat = np.dot(unalign_mat.T, proj_mat)
pre_proj_mates[object_id]=proj_mat
ref=np.array([
[0,1.0], #Up
[-1.0,0],#Left
[0,1.0], #Right
[0.0,-1.0] #Down
]) #4*2
dir_list=[
"Down",
"Left",
"Right",
"Up"
]
for image_id in image_id_list:
color_path=os.path.join(color_folder,image_id+".jpg")
depth_path=os.path.join(depth_folder,image_id+".png")
pose_path=os.path.join(pose_folder,image_id+".txt")
color=cv2.imread(color_path)
height,width=color.shape[0:2]
depth=cv2.imread(depth_path,cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH)/1000.0
pose=np.loadtxt(pose_path)
for object_id in bboxes_dict:
object=bboxes_dict[object_id]
category=object['category']
sizes=object['size']
object_vox_coor=vox_coor*sizes[np.newaxis,:]
#print(np.amin(object_vox_coor,axis=0),np.amax(object_vox_coor,axis=0))
#print(sizes)
prev_proj_mat=pre_proj_mates[object_id]
wrd2cam_pose = np.linalg.inv(pose)
current_proj_mat = np.dot(wrd2cam_pose, prev_proj_mat)
K4=np.eye(4)
K4[0:3,0:3]=K
'''calibrate proj_mat'''
up_vectors = np.array([[0, 0, 0, 1.0],
[0, 0.5, 0, 1.0]])
up_vec_inimg = np.dot(up_vectors, current_proj_mat.T)
up_vec_inimg = np.dot(up_vec_inimg,K4.T)
up_x = up_vec_inimg[:, 0] / up_vec_inimg[:, 2]
up_y = up_vec_inimg[:, 1] / up_vec_inimg[:, 2]
pt1 = np.array((up_x[0], up_y[0]))
pt2 = np.array((up_x[1], up_y[1]))
up_dir = pt2 - pt1
# print(up_dir)
product = np.sum(up_dir[np.newaxis, :] * ref, axis=1)
max_ind = np.argmax(product)
direction = dir_list[max_ind]
sky_rot = rotate_mat(direction)
#final_proj_mat = np.dot(K4,final_proj_mat)
vox_homo=np.concatenate([object_vox_coor,np.ones((object_vox_coor.shape[0],1))],axis=1)
vox_proj=np.dot(vox_homo,current_proj_mat.T)
vox_proj=np.dot(vox_proj,K4.T)
vox_x=vox_proj[:,0]/vox_proj[:,2]
vox_y=vox_proj[:,1]/vox_proj[:,2]
if np.mean(vox_proj[:,2])>5:
continue
inside_mask=((vox_x<width-1) &(vox_x>0) &(vox_y<height-1) &(vox_y>0)).astype(np.float32)
infrustum_ratio=np.sum(inside_mask)/vox_x.shape[0]
if infrustum_ratio < 0.4 and category in ["chair", "stool"]:
continue
elif infrustum_ratio <0.2:
continue
#print(object_id,image_id,infrustum_ratio)
'''objects visibility check for every frame'''
vox_x_inside=vox_x[inside_mask>0].astype(np.int32)
vox_y_inside=vox_y[inside_mask>0].astype(np.int32)
vox_depth=vox_proj[inside_mask>0,2]
#print(depth.shape,np.amax(vox_y_inside),np.amax(vox_x_inside))
depth_sample=depth[vox_y_inside,vox_x_inside]
depth_mask=(depth_sample>0)&(depth_sample<10.0)
depth_sample=depth_sample[depth_mask]
vox_depth=vox_depth[depth_mask]
if vox_depth.shape[0]<100:
continue
occluded_ratio=np.sum(((vox_depth-depth_sample)>0.2).astype(np.float32))/vox_depth.shape[0]
if occluded_ratio>0.6 and category in ["chair"]: #chair is easily occluded, while table is not
continue
depth_near_ratio = np.sum((np.abs(vox_depth - depth_sample) < sizes.max() * 0.5).astype(np.float32)) / \
vox_depth.shape[0]
if depth_near_ratio < 0.2:
continue
'''make sure in every image, the object is upward'''
bbox=(np.amin(vox_x_inside),np.amin(vox_y_inside),np.amax(vox_x_inside),np.amax(vox_y_inside))
rot_image=rotate_image(color,direction)
bbox = rotate_bbox(bbox, direction, height, width)
crop_image=rot_image[bbox[1]:bbox[3],bbox[0]:bbox[2]]
crop_h, crop_w = crop_image.shape[0:2]
max_length = max(crop_h, crop_w)
if max_length<100:
continue
pad_image = np.zeros((max_length, max_length, 3))
if crop_h > crop_w:
margin = crop_h - crop_w
pad_image[:, margin // 2:margin // 2 + crop_w] = crop_image[:, :, :]
x_start, x_end = bbox[0] - margin // 2, margin // 2 + bbox[2]
y_start, y_end = bbox[1], bbox[3]
else:
margin = crop_w - crop_h
pad_image[margin // 2:margin // 2 + crop_h, :] = crop_image[:, :, :]
y_start, y_end = bbox[1] - margin // 2, bbox[3] + margin // 2
x_start, x_end = bbox[0], bbox[2]
pad_image=cv2.resize(pad_image,dsize=(224,224),interpolation=cv2.INTER_LINEAR)
image_save_folder = os.path.join(save_folder, "6_images", category + "_%d" % (object_id))
os.makedirs(image_save_folder, exist_ok=True)
image_save_path=os.path.join(image_save_folder,image_id+".jpg")
#print("saving to %s"%(image_save_path))
cv2.imwrite(image_save_path,pad_image)
proj_mat=np.dot(sky_rot,current_proj_mat)
new_K4 = rotate_K(K, direction)
new_K4[0, 2] -= x_start
new_K4[1, 2] -= y_start
new_K4[0] = new_K4[0] / max_length * 224
new_K4[1] = new_K4[1] / max_length * 224
proj_mat = np.dot(new_K4, proj_mat)
proj_save_folder=os.path.join(save_folder,"8_proj_matrix",category+"_%d"%(object_id))
os.makedirs(proj_save_folder,exist_ok=True)
proj_save_path=os.path.join(proj_save_folder,image_id+".npy")
np.save(proj_save_path,proj_mat)
'''debug proj matrix'''
if args.debug:
proj_save_folder=os.path.join(save_folder,"9_proj_images",category+"_%d"%(object_id))
os.makedirs(proj_save_folder,exist_ok=True)
canvas=copy.deepcopy(pad_image)
par_points=obj_points_dict[object_id]
par_homo=np.concatenate([par_points,np.ones((par_points.shape[0],1))],axis=1)
par_inimg=np.dot(par_homo,proj_mat.T)
x=par_inimg[:,0]/par_inimg[:,2]
y=par_inimg[:,1]/par_inimg[:,2]
x=np.clip(x,a_min=0,a_max=223).astype(np.int32)
y=np.clip(y,a_min=0,a_max=223).astype(np.int32)
canvas[y,x]=np.array([[0,255,0]])
proj_save_path=os.path.join(proj_save_folder,image_id+".jpg")
cv2.imwrite(proj_save_path,canvas)
|