File size: 9,528 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import scatter_mean, scatter_max
from .unet import UNet
from .resnet_block import ResnetBlockFC
import numpy as np

class DiagonalGaussianDistribution(object):
    def __init__(self, mean, logvar, deterministic=False):
        self.mean = mean
        self.logvar = logvar
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(device=self.mean.device)

    def sample(self):
        x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.mean.device)
        return x

    def kl(self, other=None):
        if self.deterministic:
            return torch.Tensor([0.])
        else:
            if other is None:
                return 0.5 * torch.mean(torch.pow(self.mean, 2)
                                       + self.var - 1.0 - self.logvar,
                                       dim=[1, 2,3])
            else:
                return 0.5 * torch.mean(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var - 1.0 - self.logvar + other.logvar,
                    dim=[1, 2, 3])

    def nll(self, sample, dims=[1,2,3]):
        if self.deterministic:
            return torch.Tensor([0.])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims)

    def mode(self):
        return self.mean

class ConvPointnet_Encoder(nn.Module):
    ''' PointNet-based encoder network with ResNet blocks for each point.
        Number of input points are fixed.

    Args:
        c_dim (int): dimension of latent code c
        dim (int): input points dimension
        hidden_dim (int): hidden dimension of the network
        scatter_type (str): feature aggregation when doing local pooling
        unet (bool): weather to use U-Net
        unet_kwargs (str): U-Net parameters
        plane_resolution (int): defined resolution for plane feature
        plane_type (str): feature type, 'xz' - 1-plane, ['xz', 'xy', 'yz'] - 3-plane, ['grid'] - 3D grid volume
        padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55]
        n_blocks (int): number of blocks ResNetBlockFC layers
    '''

    def __init__(self, c_dim=128, dim=3, hidden_dim=128,latent_dim=32, scatter_type='max',
                 unet=False, unet_kwargs=None,
                 plane_resolution=None, plane_type=['xz', 'xy', 'yz'], padding=0.1, n_blocks=5):
        super().__init__()
        self.c_dim = c_dim

        self.fc_pos = nn.Linear(dim, 2 * hidden_dim)
        self.blocks = nn.ModuleList([
            ResnetBlockFC(2 * hidden_dim, hidden_dim) for i in range(n_blocks)
        ])
        self.fc_c = nn.Linear(hidden_dim, c_dim)

        self.actvn = nn.ReLU()
        self.hidden_dim = hidden_dim

        if unet:
            self.unet = UNet(unet_kwargs['output_dim'], in_channels=c_dim, **unet_kwargs)
        else:
            self.unet = None

        self.reso_plane = plane_resolution
        self.plane_type = plane_type
        self.padding = padding

        if scatter_type == 'max':
            self.scatter = scatter_max
        elif scatter_type == 'mean':
            self.scatter = scatter_mean

        self.mean_fc = nn.Conv2d(unet_kwargs['output_dim'], latent_dim,kernel_size=1)
        self.logvar_fc = nn.Conv2d(unet_kwargs['output_dim'], latent_dim,kernel_size=1)

    # takes in "p": point cloud and "query": sdf_xyz
    # sample plane features for unlabeled_query as well
    def forward(self, p,point_emb):  # , query2):
        batch_size, T, D = p.size()
        #print('origin',torch.amin(p[0],dim=0),torch.amax(p[0],dim=0))
        # acquire the index for each point
        coord = {}
        index = {}
        if 'xz' in self.plane_type:
            coord['xz'] = self.normalize_coordinate(p.clone(), plane='xz', padding=self.padding)
            index['xz'] = self.coordinate2index(coord['xz'], self.reso_plane)
        if 'xy' in self.plane_type:
            coord['xy'] = self.normalize_coordinate(p.clone(), plane='xy', padding=self.padding)
            index['xy'] = self.coordinate2index(coord['xy'], self.reso_plane)
        if 'yz' in self.plane_type:
            coord['yz'] = self.normalize_coordinate(p.clone(), plane='yz', padding=self.padding)
            index['yz'] = self.coordinate2index(coord['yz'], self.reso_plane)
        net = self.fc_pos(point_emb)

        net = self.blocks[0](net)
        for block in self.blocks[1:]:
            pooled = self.pool_local(coord, index, net)
            net = torch.cat([net, pooled], dim=2)
            net = block(net)

        c = self.fc_c(net)
        #print(c.shape)

        fea = {}
        plane_feat_sum = 0
        # second_sum = 0
        if 'xz' in self.plane_type:
            fea['xz'] = self.generate_plane_features(p, c,
                                                     plane='xz')  # shape: batch, latent size, resolution, resolution (e.g. 16, 256, 64, 64)
        if 'xy' in self.plane_type:
            fea['xy'] = self.generate_plane_features(p, c, plane='xy')
        if 'yz' in self.plane_type:
            fea['yz'] = self.generate_plane_features(p, c, plane='yz')
        cat_feature = torch.cat([fea['xz'], fea['xy'], fea['yz']],
                                dim=2)  # concat at row dimension
        #print(cat_feature.shape)
        plane_feat=self.unet(cat_feature)

        mean=self.mean_fc(plane_feat)
        logvar=self.logvar_fc(plane_feat)

        posterior = DiagonalGaussianDistribution(mean, logvar)
        x = posterior.sample()
        kl = posterior.kl()

        return kl, x, mean, logvar


    def normalize_coordinate(self, p, padding=0.1, plane='xz'):
        ''' Normalize coordinate to [0, 1] for unit cube experiments

        Args:
            p (tensor): point
            padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55]
            plane (str): plane feature type, ['xz', 'xy', 'yz']
        '''
        if plane == 'xz':
            xy = p[:, :, [0, 2]]
        elif plane == 'xy':
            xy = p[:, :, [0, 1]]
        else:
            xy = p[:, :, [1, 2]]
        #print("origin",torch.amin(xy), torch.amax(xy))
        xy=xy/2 #xy is originally -1 ~ 1
        xy_new = xy / (1 + padding + 10e-6)  # (-0.5, 0.5)
        xy_new = xy_new + 0.5  # range (0, 1)
        #print("scale",torch.amin(xy_new),torch.amax(xy_new))

        # f there are outliers out of the range
        if xy_new.max() >= 1:
            xy_new[xy_new >= 1] = 1 - 10e-6
        if xy_new.min() < 0:
            xy_new[xy_new < 0] = 0.0
        return xy_new

    def coordinate2index(self, x, reso):
        ''' Normalize coordinate to [0, 1] for unit cube experiments.
            Corresponds to our 3D model

        Args:
            x (tensor): coordinate
            reso (int): defined resolution
            coord_type (str): coordinate type
        '''
        x = (x * reso).long()
        index = x[:, :, 0] + reso * x[:, :, 1]
        index = index[:, None, :]
        return index

    # xy is the normalized coordinates of the point cloud of each plane
    # I'm pretty sure the keys of xy are the same as those of index, so xy isn't needed here as input
    def pool_local(self, xy, index, c):
        bs, fea_dim = c.size(0), c.size(2)
        keys = xy.keys()

        c_out = 0
        for key in keys:
            # scatter plane features from points
            fea = self.scatter(c.permute(0, 2, 1), index[key], dim_size=self.reso_plane ** 2)
            if self.scatter == scatter_max:
                fea = fea[0]
            # gather feature back to points
            fea = fea.gather(dim=2, index=index[key].expand(-1, fea_dim, -1))
            c_out += fea
        return c_out.permute(0, 2, 1)

    def generate_plane_features(self, p, c, plane='xz'):
        # acquire indices of features in plane
        xy = self.normalize_coordinate(p.clone(), plane=plane, padding=self.padding)  # normalize to the range of (0, 1)
        index = self.coordinate2index(xy, self.reso_plane)

        # scatter plane features from points
        fea_plane = c.new_zeros(p.size(0), self.c_dim, self.reso_plane ** 2)
        c = c.permute(0, 2, 1)  # B x 512 x T
        fea_plane = scatter_mean(c, index, out=fea_plane)  # B x 512 x reso^2
        fea_plane = fea_plane.reshape(p.size(0), self.c_dim, self.reso_plane,
                                      self.reso_plane)  # sparce matrix (B x 512 x reso x reso)
        #print(fea_plane.shape)

        return fea_plane

    # sample_plane_feature function copied from /src/conv_onet/models/decoder.py
    # uses values from plane_feature and pixel locations from vgrid to interpolate feature
    def sample_plane_feature(self, query, plane_feature, plane):
        xy = self.normalize_coordinate(query.clone(), plane=plane, padding=self.padding)
        xy = xy[:, :, None].float()
        vgrid = 2.0 * xy - 1.0  # normalize to (-1, 1)
        sampled_feat = F.grid_sample(plane_feature, vgrid, padding_mode='border', align_corners=True,
                                     mode='bilinear').squeeze(-1)
        return sampled_feat