File size: 6,907 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import scatter_mean, scatter_max
from .unet import UNet
from .resnet_block import ResnetBlockFC
from .PointEMB import PointEmbed
import numpy as np

class ParPoint_Encoder(nn.Module):
    ''' PointNet-based encoder network with ResNet blocks for each point.
        Number of input points are fixed.

    Args:
        c_dim (int): dimension of latent code c
        dim (int): input points dimension
        hidden_dim (int): hidden dimension of the network
        scatter_type (str): feature aggregation when doing local pooling
        unet (bool): weather to use U-Net
        unet_kwargs (str): U-Net parameters
        plane_resolution (int): defined resolution for plane feature
        plane_type (str): feature type, 'xz' - 1-plane, ['xz', 'xy', 'yz'] - 3-plane, ['grid'] - 3D grid volume
        padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55]
        n_blocks (int): number of blocks ResNetBlockFC layers
    '''

    def __init__(self, c_dim=128, dim=3, hidden_dim=128, scatter_type='max', unet_kwargs=None,
                 plane_resolution=None, plane_type=['xz', 'xy', 'yz'], padding=0.1, n_blocks=5):
        super().__init__()
        self.c_dim = c_dim

        self.fc_pos = nn.Linear(dim, 2 * hidden_dim)
        self.blocks = nn.ModuleList([
            ResnetBlockFC(2 * hidden_dim, hidden_dim) for i in range(n_blocks)
        ])
        self.fc_c = nn.Linear(hidden_dim, c_dim)

        self.actvn = nn.ReLU()
        self.hidden_dim = hidden_dim

        self.unet = UNet(unet_kwargs['output_dim'], in_channels=c_dim, **unet_kwargs)

        self.reso_plane = plane_resolution
        self.plane_type = plane_type
        self.padding = padding

        if scatter_type == 'max':
            self.scatter = scatter_max
        elif scatter_type == 'mean':
            self.scatter = scatter_mean

    # takes in "p": point cloud and "query": sdf_xyz
    # sample plane features for unlabeled_query as well
    def forward(self, p,point_emb):  # , query2):
        batch_size, T, D = p.size()
        #print('origin',torch.amin(p[0],dim=0),torch.amax(p[0],dim=0))
        # acquire the index for each point
        coord = {}
        index = {}
        if 'xz' in self.plane_type:
            coord['xz'] = self.normalize_coordinate(p.clone(), plane='xz', padding=self.padding)
            index['xz'] = self.coordinate2index(coord['xz'], self.reso_plane)
        if 'xy' in self.plane_type:
            coord['xy'] = self.normalize_coordinate(p.clone(), plane='xy', padding=self.padding)
            index['xy'] = self.coordinate2index(coord['xy'], self.reso_plane)
        if 'yz' in self.plane_type:
            coord['yz'] = self.normalize_coordinate(p.clone(), plane='yz', padding=self.padding)
            index['yz'] = self.coordinate2index(coord['yz'], self.reso_plane)
        net = self.fc_pos(point_emb)

        net = self.blocks[0](net)
        for block in self.blocks[1:]:
            pooled = self.pool_local(coord, index, net)
            net = torch.cat([net, pooled], dim=2)
            net = block(net)

        c = self.fc_c(net)
        #print(c.shape)

        fea = {}
        # second_sum = 0
        if 'xz' in self.plane_type:
            fea['xz'] = self.generate_plane_features(p, c,
                                                     plane='xz')  # shape: batch, latent size, resolution, resolution (e.g. 16, 256, 64, 64)
        if 'xy' in self.plane_type:
            fea['xy'] = self.generate_plane_features(p, c, plane='xy')
        if 'yz' in self.plane_type:
            fea['yz'] = self.generate_plane_features(p, c, plane='yz')
        cat_feature = torch.cat([fea['xz'], fea['xy'], fea['yz']],
                                dim=2)  # concat at row dimension
        #print(cat_feature.shape)
        plane_feat=self.unet(cat_feature)

        return plane_feat


    def normalize_coordinate(self, p, padding=0.1, plane='xz'):
        ''' Normalize coordinate to [0, 1] for unit cube experiments

        Args:
            p (tensor): point
            padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55]
            plane (str): plane feature type, ['xz', 'xy', 'yz']
        '''
        if plane == 'xz':
            xy = p[:, :, [0, 2]]
        elif plane == 'xy':
            xy = p[:, :, [0, 1]]
        else:
            xy = p[:, :, [1, 2]]
        #print("origin",torch.amin(xy), torch.amax(xy))
        xy=xy/2 #xy is originally -1 ~ 1
        xy_new = xy / (1 + padding + 10e-6)  # (-0.5, 0.5)
        xy_new = xy_new + 0.5  # range (0, 1)
        #print("scale",torch.amin(xy_new),torch.amax(xy_new))

        # f there are outliers out of the range
        if xy_new.max() >= 1:
            xy_new[xy_new >= 1] = 1 - 10e-6
        if xy_new.min() < 0:
            xy_new[xy_new < 0] = 0.0
        return xy_new

    def coordinate2index(self, x, reso):
        ''' Normalize coordinate to [0, 1] for unit cube experiments.
            Corresponds to our 3D model

        Args:
            x (tensor): coordinate
            reso (int): defined resolution
            coord_type (str): coordinate type
        '''
        x = (x * reso).long()
        index = x[:, :, 0] + reso * x[:, :, 1]
        index = index[:, None, :]
        return index

    # xy is the normalized coordinates of the point cloud of each plane
    # I'm pretty sure the keys of xy are the same as those of index, so xy isn't needed here as input
    def pool_local(self, xy, index, c):
        bs, fea_dim = c.size(0), c.size(2)
        keys = xy.keys()

        c_out = 0
        for key in keys:
            # scatter plane features from points
            fea = self.scatter(c.permute(0, 2, 1), index[key], dim_size=self.reso_plane ** 2)
            if self.scatter == scatter_max:
                fea = fea[0]
            # gather feature back to points
            fea = fea.gather(dim=2, index=index[key].expand(-1, fea_dim, -1))
            c_out += fea
        return c_out.permute(0, 2, 1)

    def generate_plane_features(self, p, c, plane='xz'):
        # acquire indices of features in plane
        xy = self.normalize_coordinate(p.clone(), plane=plane, padding=self.padding)  # normalize to the range of (0, 1)
        index = self.coordinate2index(xy, self.reso_plane)

        # scatter plane features from points
        fea_plane = c.new_zeros(p.size(0), self.c_dim, self.reso_plane ** 2)
        c = c.permute(0, 2, 1)  # B x 512 x T
        fea_plane = scatter_mean(c, index, out=fea_plane)  # B x 512 x reso^2
        fea_plane = fea_plane.reshape(p.size(0), self.c_dim, self.reso_plane,
                                      self.reso_plane)  # sparce matrix (B x 512 x reso x reso)
        #print(fea_plane.shape)

        return fea_plane