File size: 14,315 Bytes
cc9780d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from torch import nn, einsum
import torch
import torch.nn.functional as F
from einops import rearrange,repeat
from timm.models.layers import DropPath
from torch_cluster import fps
import numpy as np

def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module

class PositionalEmbedding(torch.nn.Module):
    def __init__(self, num_channels, max_positions=10000, endpoint=False):
        super().__init__()
        self.num_channels = num_channels
        self.max_positions = max_positions
        self.endpoint = endpoint

    def forward(self, x):
        freqs = torch.arange(start=0, end=self.num_channels//2, dtype=torch.float32, device=x.device)
        freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0))
        freqs = (1 / self.max_positions) ** freqs
        x = x.ger(freqs.to(x.dtype))
        x = torch.cat([x.cos(), x.sin()], dim=1)
        return x

class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head * heads

        if context_dim is None:
            context_dim = query_dim

        self.scale = dim_head ** -0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim),
            nn.Dropout(dropout)
        )

    def forward(self, x, context=None, mask=None):
        h = self.heads

        q = self.to_q(x)

        if context is None:
            context = x

        k = self.to_k(context)
        v = self.to_v(context)

        q, k, v = map(lambda t: rearrange(
            t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = torch.einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
        return self.to_out(out)


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma

class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)

class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
        super().__init__()
        inner_dim = int(dim * mult)
        if dim_out is None:
            dim_out = dim

        project_in = nn.Sequential(
            nn.Linear(dim, inner_dim),
            nn.GELU()
        ) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)

class AdaLayerNorm(nn.Module):
    def __init__(self, n_embd):
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(n_embd, n_embd*2)
        self.layernorm = nn.LayerNorm(n_embd, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(timestep)
        scale, shift = torch.chunk(emb, 2, dim=2)
        x = self.layernorm(x) * (1 + scale) + shift
        return x

class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
                                    heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
        self.norm1 = AdaLayerNorm(dim)
        self.norm2 = AdaLayerNorm(dim)
        self.norm3 = AdaLayerNorm(dim)
        self.checkpoint = checkpoint

        init_values = 0
        drop_path = 0.0


        self.ls1 = LayerScale(
            dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path1 = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

        self.ls2 = LayerScale(
            dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

        self.ls3 = LayerScale(
            dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path3 = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x, t, context=None):
        x = self.drop_path1(self.ls1(self.attn1(self.norm1(x, t)))) + x
        x = self.drop_path2(self.ls2(self.attn2(self.norm2(x, t), context=context))) + x
        x = self.drop_path3(self.ls3(self.ff(self.norm3(x, t)))) + x
        return x

class LatentArrayTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    """

    def __init__(self, in_channels, t_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None, out_channels=None, context_dim2=None,
                 block=BasicTransformerBlock):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head

        self.t_channels = t_channels

        self.proj_in = nn.Linear(in_channels, inner_dim, bias=False)

        self.transformer_blocks = nn.ModuleList(
            [block(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
             for _ in range(depth)]
        )

        self.norm = nn.LayerNorm(inner_dim)

        if out_channels is None:
            self.proj_out = zero_module(nn.Linear(inner_dim, in_channels, bias=False))
        else:
            self.num_cls = out_channels
            self.proj_out = zero_module(nn.Linear(inner_dim, out_channels, bias=False))

        self.context_dim = context_dim

        self.map_noise = PositionalEmbedding(t_channels)

        self.map_layer0 = nn.Linear(in_features=t_channels, out_features=inner_dim)
        self.map_layer1 = nn.Linear(in_features=inner_dim, out_features=inner_dim)

        # ###
        # self.pos_emb = nn.Embedding(512, inner_dim)
        # ###

    def forward(self, x, t, cond, class_emb):

        t_emb = self.map_noise(t)[:, None]
        t_emb = F.silu(self.map_layer0(t_emb))
        t_emb = F.silu(self.map_layer1(t_emb))

        x = self.proj_in(x)
        #print(class_emb.shape,t_emb.shape)
        for block in self.transformer_blocks:
            x = block(x, t_emb+class_emb[:,None,:], context=cond)

        x = self.norm(x)

        x = self.proj_out(x)
        return x

class PointTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    """

    def __init__(self, in_channels, t_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None, out_channels=None, context_dim2=None,
                 block=BasicTransformerBlock):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head

        self.t_channels = t_channels

        self.proj_in = nn.Linear(in_channels, inner_dim, bias=False)

        self.transformer_blocks = nn.ModuleList(
            [block(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
             for _ in range(depth)]
        )

        self.norm = nn.LayerNorm(inner_dim)

        if out_channels is None:
            self.proj_out = zero_module(nn.Linear(inner_dim, in_channels, bias=False))
        else:
            self.num_cls = out_channels
            self.proj_out = zero_module(nn.Linear(inner_dim, out_channels, bias=False))

        self.context_dim = context_dim

        self.map_noise = PositionalEmbedding(t_channels)

        self.map_layer0 = nn.Linear(in_features=t_channels, out_features=inner_dim)
        self.map_layer1 = nn.Linear(in_features=inner_dim, out_features=inner_dim)

        # ###
        # self.pos_emb = nn.Embedding(512, inner_dim)
        # ###

    def forward(self, x, t, cond=None):

        t_emb = self.map_noise(t)[:, None]
        t_emb = F.silu(self.map_layer0(t_emb))
        t_emb = F.silu(self.map_layer1(t_emb))

        x = self.proj_in(x)

        for block in self.transformer_blocks:
            x = block(x, t_emb, context=cond)

        x = self.norm(x)

        x = self.proj_out(x)
        return x
def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def cache_fn(f):
    cache = None
    @wraps(f)
    def cached_fn(*args, _cache = True, **kwargs):
        if not _cache:
            return f(*args, **kwargs)
        nonlocal cache
        if cache is not None:
            return cache
        cache = f(*args, **kwargs)
        return cache
    return cached_fn

class PreNorm(nn.Module):
    def __init__(self, dim, fn, context_dim = None):
        super().__init__()
        self.fn = fn
        self.norm = nn.LayerNorm(dim)
        self.norm_context = nn.LayerNorm(context_dim) if exists(context_dim) else None

    def forward(self, x, **kwargs):
        x = self.norm(x)

        if exists(self.norm_context):
            context = kwargs['context']
            normed_context = self.norm_context(context)
            kwargs.update(context = normed_context)

        return self.fn(x, **kwargs)

class Attention(nn.Module):
    def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64, drop_path_rate = 0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)
        self.scale = dim_head ** -0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias = False)
        self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
        self.to_out = nn.Linear(inner_dim, query_dim)

        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    def forward(self, x, context = None, mask = None):
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k, v = self.to_kv(context).chunk(2, dim = -1)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))

        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

        if exists(mask):
            mask = rearrange(mask, 'b ... -> b (...)')
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, 'b j -> (b h) () j', h = h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim = -1)

        out = einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
        return self.drop_path(self.to_out(out))


class PointEmbed(nn.Module):
    def __init__(self, hidden_dim=48, dim=128):
        super().__init__()

        assert hidden_dim % 6 == 0

        self.embedding_dim = hidden_dim
        e = torch.pow(2, torch.arange(self.embedding_dim // 6)).float() * np.pi
        e = torch.stack([
            torch.cat([e, torch.zeros(self.embedding_dim // 6),
                       torch.zeros(self.embedding_dim // 6)]),
            torch.cat([torch.zeros(self.embedding_dim // 6), e,
                       torch.zeros(self.embedding_dim // 6)]),
            torch.cat([torch.zeros(self.embedding_dim // 6),
                       torch.zeros(self.embedding_dim // 6), e]),
        ])
        self.register_buffer('basis', e)  # 3 x 16

        self.mlp = nn.Linear(self.embedding_dim + 3, dim)

    @staticmethod
    def embed(input, basis):
        projections = torch.einsum(
            'bnd,de->bne', input, basis)
        embeddings = torch.cat([projections.sin(), projections.cos()], dim=2)
        return embeddings

    def forward(self, input):
        # input: B x N x 3
        embed = self.mlp(torch.cat([self.embed(input, self.basis), input], dim=2))  # B x N x C
        return embed


class PointEncoder(nn.Module):
    def __init__(self,
        dim=512,
        num_inputs = 2048,
        num_latents = 512,
        latent_dim = 512):
        super().__init__()

        self.num_inputs = num_inputs
        self.num_latents = num_latents

        self.cross_attend_blocks = nn.ModuleList([
            PreNorm(dim, Attention(dim, dim, heads=1, dim_head=dim), context_dim=dim),
            PreNorm(dim, FeedForward(dim))
        ])

        self.point_embed = PointEmbed(dim=dim)
        self.proj=nn.Linear(dim,latent_dim)
    def encode(self, pc):
        # pc: B x N x 3
        B, N, D = pc.shape
        assert N == self.num_inputs

        ###### fps
        flattened = pc.view(B * N, D)

        batch = torch.arange(B).to(pc.device)
        batch = torch.repeat_interleave(batch, N)

        pos = flattened

        ratio = 1.0 * self.num_latents / self.num_inputs

        idx = fps(pos, batch, ratio=ratio)

        sampled_pc = pos[idx]
        sampled_pc = sampled_pc.view(B, -1, 3)
        ######

        sampled_pc_embeddings = self.point_embed(sampled_pc)

        pc_embeddings = self.point_embed(pc)

        cross_attn, cross_ff = self.cross_attend_blocks

        x = cross_attn(sampled_pc_embeddings, context=pc_embeddings, mask=None) + sampled_pc_embeddings
        x = cross_ff(x) + x

        return self.proj(x)