|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import sys |
|
sys.path.append("..") |
|
from typing import Iterable |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
import util.misc as misc |
|
import util.lr_sched as lr_sched |
|
|
|
|
|
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, |
|
data_loader: Iterable, optimizer: torch.optim.Optimizer, |
|
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, |
|
log_writer=None, args=None): |
|
model.train(True) |
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
header = 'Epoch: [{}]'.format(epoch) |
|
print_freq = 20 |
|
|
|
accum_iter = args.accum_iter |
|
|
|
optimizer.zero_grad() |
|
|
|
kl_weight = 25e-3 |
|
|
|
if log_writer is not None: |
|
print('log_dir: {}'.format(log_writer.log_dir)) |
|
|
|
for data_iter_step, data_batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)): |
|
|
|
|
|
if data_iter_step % accum_iter == 0: |
|
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) |
|
|
|
points = data_batch['points'].to(device, non_blocking=True) |
|
labels = data_batch['labels'].to(device, non_blocking=True) |
|
surface = data_batch['surface'].to(device, non_blocking=True) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
outputs = model(surface, points) |
|
if 'kl' in outputs: |
|
loss_kl = outputs['kl'] |
|
|
|
loss_kl = torch.sum(loss_kl) / loss_kl.shape[0] |
|
else: |
|
loss_kl = None |
|
|
|
outputs = outputs['logits'] |
|
|
|
num_samples=outputs.shape[1]//2 |
|
|
|
loss_vol = criterion(outputs[:, :num_samples], labels[:, :num_samples]) |
|
loss_near = criterion(outputs[:, num_samples:], labels[:, num_samples:]) |
|
|
|
if loss_kl is not None: |
|
loss = loss_vol + 0.1 * loss_near + kl_weight * loss_kl |
|
else: |
|
loss = loss_vol + 0.1 * loss_near |
|
|
|
loss_value = loss.item() |
|
|
|
threshold = 0 |
|
|
|
pred = torch.zeros_like(outputs[:, :num_samples]) |
|
pred[outputs[:, :num_samples] >= threshold] = 1 |
|
|
|
accuracy = (pred == labels[:, :num_samples]).float().sum(dim=1) / labels[:, :num_samples].shape[1] |
|
accuracy = accuracy.mean() |
|
intersection = (pred * labels[:, :num_samples]).sum(dim=1) |
|
union = (pred + labels[:, :num_samples]).gt(0).sum(dim=1) + 1e-5 |
|
iou = intersection * 1.0 / union |
|
iou = iou.mean() |
|
|
|
if not math.isfinite(loss_value): |
|
print("Loss is {}, stopping training".format(loss_value)) |
|
sys.exit(1) |
|
|
|
loss /= accum_iter |
|
loss_scaler(loss, optimizer, clip_grad=max_norm, |
|
parameters=model.parameters(), create_graph=False, |
|
update_grad=(data_iter_step + 1) % accum_iter == 0) |
|
if (data_iter_step + 1) % accum_iter == 0: |
|
optimizer.zero_grad() |
|
|
|
torch.cuda.synchronize() |
|
|
|
metric_logger.update(loss=loss_value) |
|
|
|
metric_logger.update(loss_vol=loss_vol.item()) |
|
metric_logger.update(loss_near=loss_near.item()) |
|
|
|
if loss_kl is not None: |
|
metric_logger.update(loss_kl=loss_kl.item()) |
|
|
|
metric_logger.update(iou=iou.item()) |
|
|
|
min_lr = 10. |
|
max_lr = 0. |
|
for group in optimizer.param_groups: |
|
min_lr = min(min_lr, group["lr"]) |
|
max_lr = max(max_lr, group["lr"]) |
|
|
|
metric_logger.update(lr=max_lr) |
|
|
|
loss_value_reduce = misc.all_reduce_mean(loss_value) |
|
iou_reduce=misc.all_reduce_mean(iou) |
|
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0: |
|
""" We use epoch_1000x as the x-axis in tensorboard. |
|
This calibrates different curves when batch size changes. |
|
""" |
|
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) |
|
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x) |
|
log_writer.add_scalar('iou', iou_reduce, epoch_1000x) |
|
log_writer.add_scalar('lr', max_lr, epoch_1000x) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|
|
|
|
@torch.no_grad() |
|
def evaluate(data_loader, model, device): |
|
criterion = torch.nn.BCEWithLogitsLoss() |
|
|
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
header = 'Test:' |
|
|
|
|
|
model.eval() |
|
|
|
for data_batch in metric_logger.log_every(data_loader, 50, header): |
|
|
|
points = data_batch['points'].to(device, non_blocking=True) |
|
labels = data_batch['labels'].to(device, non_blocking=True) |
|
surface = data_batch['surface'].to(device, non_blocking=True) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
|
|
outputs = model(surface, points) |
|
if 'kl' in outputs: |
|
loss_kl = outputs['kl'] |
|
loss_kl = torch.sum(loss_kl) / loss_kl.shape[0] |
|
else: |
|
loss_kl = None |
|
|
|
outputs = outputs['logits'] |
|
|
|
loss = criterion(outputs, labels) |
|
|
|
threshold = 0 |
|
|
|
pred = torch.zeros_like(outputs) |
|
pred[outputs >= threshold] = 1 |
|
|
|
accuracy = (pred == labels).float().sum(dim=1) / labels.shape[1] |
|
accuracy = accuracy.mean() |
|
intersection = (pred * labels).sum(dim=1) |
|
union = (pred + labels).gt(0).sum(dim=1) |
|
iou = intersection * 1.0 / union + 1e-5 |
|
iou = iou.mean() |
|
|
|
batch_size = points.shape[0] |
|
metric_logger.update(loss=loss.item()) |
|
metric_logger.meters['iou'].update(iou.item(), n=batch_size) |
|
|
|
if loss_kl is not None: |
|
metric_logger.update(loss_kl=loss_kl.item()) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print('* iou {iou.global_avg:.3f} loss {losses.global_avg:.3f}' |
|
.format(iou=metric_logger.iou, losses=metric_logger.loss)) |
|
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |