LASA / demo /simple_dataset.py
HaolinLiu's picture
update files for demo
18bb538
raw
history blame
7.21 kB
import torch
import torch.nn as nn
from torch.utils import data
import os
from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
import glob
import numpy as np
import open3d as o3d
import cv2
from datasets.taxonomy import category_map as category_ids
classname_map={
"chair":["chair","stool"],
"cabinet":["dishwasher","cabinet","oven","refrigerator",'storage'],
"sofa":["sofa"],
"table":["table"],
"bed":["bed"],
"shelf":["shelf"]
}
classname_remap={ #map small categories to six large categories
"chair":"chair",
"stool":"chair",
"dishwasher":"cabinet",
"cabinet":"cabinet",
"oven":"cabinet",
"refrigerator":"cabinet",
"storage":"cabinet",
"sofa":"sofa",
"table":"table",
"bed":"bed",
"shelf":"shelf"
}
def image_transform(n_px):
return Compose([
Resize(n_px, interpolation=BICUBIC),
CenterCrop(n_px),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])
class Simple_InTheWild_dataset(data.Dataset):
def __init__(self,dataset_dir="/data1/haolin/data/real_scene_process_data",scene_id="letian-310",n_px=224):
self.dataset_dir=dataset_dir
self.preprocess = image_transform(n_px)
self.image_path = []
if scene_id=="all":
scene_list=os.listdir(self.dataset_dir)
for id in scene_list:
image_folder=os.path.join(self.dataset_dir,id,"6_images")
self.image_path+=glob.glob(image_folder+"/*/*jpg")
else:
image_folder = os.path.join(self.dataset_dir, scene_id, "6_images")
self.image_path += glob.glob(image_folder + "/*/*jpg")
def __len__(self):
return len(self.image_path)
def __getitem__(self,index):
path=self.image_path[index]
basename=os.path.basename(path)[:-4]
model_id=path.split(os.sep)[-2]
scene_id=path.split(os.sep)[-4]
image=Image.open(path)
image_tensor=self.preprocess(image)
return {"images":image_tensor,"image_name":basename,"model_id":model_id,"scene_id":scene_id}
class InTheWild_Dataset(data.Dataset):
def __init__(self,data_dir="/data1/haolin/data/real_scene_process_data/letian-310",scene_id="letian-310",
par_pc_size=2048,category="chair",max_n_imgs=5):
self.par_pc_size=par_pc_size
self.data_dir=data_dir
self.category=category
self.max_n_imgs=max_n_imgs
self.models=[]
category_list=classname_map[category]
modelid_list=[]
for cat in category_list:
if scene_id=="all":
scene_list=os.listdir(self.data_dir)
for id in scene_list:
data_folder=os.path.join(self.data_dir,id)
modelid_list+=glob.glob(data_folder+"/6_images/%s*"%(cat))
else:
data_folder=os.path.join(self.data_dir,scene_id)
modelid_list+=glob.glob(data_folder+"/6_images/%s*"%(cat))
sceneid_list = [item.split("/")[-3] for item in modelid_list]
modelid_list=[item.split("/")[-1] for item in modelid_list]
for idx,modelid in enumerate(modelid_list):
scene_id=sceneid_list[idx]
image_folder=os.path.join(self.data_dir,scene_id,"6_images",modelid)
image_list=os.listdir(image_folder)
if len(image_list)==0:
continue
imageid_list=[item[0:-4] for item in image_list]
imageid_list.sort(key=lambda x:int(x))
partial_path=os.path.join(self.data_dir,scene_id,"5_partial_points",modelid+".ply")
if os.path.exists(partial_path)==False: continue
self.models+=[
{'model_id':modelid,
"scene_id":scene_id,
"partial_path":partial_path,
"imageid_list":imageid_list,
}
]
def __len__(self):
return len(self.models)
def __getitem__(self,idx):
model = self.models[idx]['model_id']
scene_id=self.models[idx]['scene_id']
imageid_list = self.models[idx]['imageid_list']
partial_path=self.models[idx]['partial_path']
n_frames=min(len(imageid_list),self.max_n_imgs)
img_indexes=np.linspace(start=0,stop=len(imageid_list)-1,num=n_frames).astype(np.int32)
'''load partial points'''
par_point_o3d = o3d.io.read_point_cloud(partial_path)
par_points = np.asarray(par_point_o3d.points)
replace = par_points.shape[0] < self.par_pc_size
ind = np.random.default_rng().choice(par_points.shape[0], self.par_pc_size, replace=replace)
par_points=par_points[ind]
par_points=torch.from_numpy(par_points).float()
'''load image features'''
image_list=[]
valid_frames = []
image_namelist=[]
for img_index in img_indexes:
image_name = imageid_list[img_index]
image_feat_path = os.path.join(self.data_dir,scene_id, "7_img_feature", model,image_name + '.npz')
image = np.load(image_feat_path)["img_features"]
image_list.append(torch.from_numpy(image).float())
image_namelist.append(image_name)
valid_frames.append(True)
'''load original image'''
org_img_list=[]
for img_index in img_indexes:
image_name = imageid_list[img_index]
image_path = os.path.join(self.data_dir,scene_id, "6_images", model,image_name+".jpg")
org_image = cv2.imread(image_path)
org_image = cv2.resize(org_image, dsize=(224, 224), interpolation=cv2.INTER_LINEAR)
org_img_list.append(org_image)
'''load project matrix'''
proj_mat_list=[]
for img_index in img_indexes:
image_name = imageid_list[img_index]
proj_mat_path = os.path.join(self.data_dir,scene_id, "8_proj_matrix", model, image_name + ".npy")
proj_mat = np.load(proj_mat_path)
proj_mat_list.append(proj_mat)
'''load transformation matrix'''
tran_mat_path = os.path.join(self.data_dir,scene_id, "10_tran_matrix", model+".npy")
tran_mat = np.load(tran_mat_path)
'''category code, not used for category specific models'''
category_id = category_ids[self.category]
one_hot = torch.zeros((6)).float()
one_hot[category_id] = 1.0
ret_dict={
"model_id":model,
"scene_id":scene_id,
"par_points":par_points,
"proj_mat":torch.stack([torch.from_numpy(mat) for mat in proj_mat_list], dim=0),
"tran_mat":torch.from_numpy(tran_mat).float(),
"image":torch.stack(image_list,dim=0),
"org_image":org_img_list,
"valid_frames":torch.tensor(valid_frames).bool(),
"category_ids": category_id,
"category_code":one_hot,
}
return ret_dict