LASA / demo /process_data.py
HaolinLiu's picture
update files for demo
18bb538
import numpy as np
import os
import argparse
import open3d as o3d
import glob
import cv2
import copy
def get_roll_rot(angle):
ca=np.cos(angle)
sa=np.sin(angle)
rot=np.array([
[ca,-sa,0,0],
[sa,ca,0,0],
[0,0,1,0],
[0,0,0,1]
])
return rot
def rotate_mat(direction):
if direction == 'Up':
return np.eye(4)
elif direction == 'Left':
rot_mat=get_roll_rot(np.pi/2)
elif direction == 'Right':
rot_mat=get_roll_rot(-np.pi/2)
elif direction == 'Down':
rot_mat=get_roll_rot(np.pi)
else:
raise Exception(f'No such direction (={direction}) rotation')
return rot_mat
def rotate_K(K,direction):
if direction == 'Up' or direction=="Down":
new_K4=np.eye(4)
new_K4[0:3,0:3]=copy.deepcopy(K)
return new_K4
elif direction == 'Left' or direction =="Right":
fx,fy,cx,cy=K[0,0],K[1,1],K[0,2],K[1,2]
new_K4 = np.array([
[fy, 0, cy, 0],
[0, fx, cx, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
return new_K4
def rotate_bbox(bbox,direction, H,W):
x_min,y_min,x_max,y_max=bbox[0:4]
if direction == 'Up':
return bbox
elif direction == 'Left':
#print(W-bbox[1],W-bbox[3])
new_bbox=[min(H-bbox[1],H-bbox[3]),bbox[0],max(H-bbox[1],H-bbox[3]),bbox[2]]
elif direction == 'Right':
new_bbox=[bbox[1],min(W-bbox[0],W-bbox[2]),bbox[3],max(W-bbox[0],W-bbox[2])]
elif direction == 'Down':
new_bbox=[min(W-x_min,W-x_max),min(H-y_min,H-y_max),max(W-x_min,W-x_max),max(H-y_min,H-y_max)]
else:
raise Exception(f'No such direction (={direction}) rotation')
return new_bbox
def rotate_image(img, direction):
if direction == 'Up':
pass
elif direction == 'Left':
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
elif direction == 'Right':
img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif direction == 'Down':
img = cv2.rotate(img, cv2.ROTATE_180)
else:
raise Exception(f'No such direction (={direction}) rotation')
return img
parser=argparse.ArgumentParser()
parser.add_argument("--data_folder",type=str,required=True)
parser.add_argument("--save_dir",type=str,default=r"../example_process_data")
parser.add_argument("--debug",action="store_true",default=False)
args=parser.parse_args()
print("processing %s"%(args.data_folder))
data_folder=args.data_folder
scene_name=os.path.basename(data_folder)
save_folder=os.path.join(args.save_dir,scene_name)
os.makedirs(save_folder,exist_ok=True)
color_folder=os.path.join(data_folder,"color")
depth_folder=os.path.join(data_folder,"depth")
pose_folder=os.path.join(data_folder,"pose")
print(color_folder)
color_list=glob.glob(color_folder+"/*.jpg")
image_id_list=[os.path.basename(item)[0:-4] for item in color_list]
image_id_list.sort()
bbox_path=os.path.join(data_folder,"objects.npy")
bboxes_dict=np.load(bbox_path,allow_pickle=True).item()
intrinsic_path=os.path.join(data_folder,"intrinsic","intrinsic_color.txt")
K=np.loadtxt(intrinsic_path)
align_path=os.path.join(data_folder,"alignment_matrix.txt")
align_matrix=np.loadtxt(align_path)
if align_matrix.shape[0]==3:
new_align_matrix=np.eye(4)
new_align_matrix[0:3,0:3]=align_matrix
align_matrix=new_align_matrix
mesh_path=os.path.join(data_folder,"fused_mesh.ply")
o3d_mesh=o3d.io.read_triangle_mesh(mesh_path)
o3d_vertices = np.array(o3d_mesh.vertices)
o3d_vert_homo=np.concatenate([o3d_vertices,np.ones([o3d_vertices.shape[0],1])],axis=1)
align_o3d_vertices = np.dot(o3d_vert_homo,align_matrix)[:,0:3]
o3d_mesh.vertices = o3d.utility.Vector3dVector(align_o3d_vertices)
align_mesh_save_path=os.path.join(save_folder,"align_mesh.ply")
o3d.io.write_triangle_mesh(align_mesh_save_path,o3d_mesh)
x=np.linspace(-1,1,10)
y=np.linspace(-1,1,10)
z=np.linspace(-1,1,10)
X,Y,Z=np.meshgrid(x,y,z,indexing='ij')
vox_coor=np.concatenate([X[:,:,:,np.newaxis],Y[:,:,:,np.newaxis],Z[:,:,:,np.newaxis]],axis=-1)
vox_coor=np.reshape(vox_coor,(-1,3))
#print(np.amin(vox_coor,axis=0),np.amax(vox_coor,axis=0))
pre_proj_mates={}
obj_points_dict={}
trans_mats={}
point_save_folder=os.path.join(save_folder,"5_partial_points")
os.makedirs(point_save_folder,exist_ok=True)
tran_save_folder=os.path.join(save_folder,"10_tran_matrix")
os.makedirs(tran_save_folder,exist_ok=True)
for object_id in bboxes_dict:
object = bboxes_dict[object_id]
category = object['category']
sizes = object['size']
sizes *= 1.1
transform_matrix_t = np.array(object['transform']).reshape([4, 4])
translate = transform_matrix_t[:3, 3]
rotation = transform_matrix_t[:3, :3]
bbox_o3d = o3d.geometry.OrientedBoundingBox(translate.reshape([3, 1]),
rotation,
np.array(sizes).reshape([3, 1]))
crop_pcd = o3d_mesh.crop(bbox_o3d)
crop_vert = np.asarray(crop_pcd.vertices)
org_crop_vert = crop_vert[:, :]
crop_vert = crop_vert - translate
crop_vert = np.dot(crop_vert,np.linalg.inv(rotation).T)
crop_vert[:, 2] *= -1
bb_min, bb_max = np.amin(crop_vert, axis=0), np.amax(crop_vert, axis=0)
max_length = (bb_max - bb_min).max()
center = (bb_max + bb_min) / 2
crop_vert = (crop_vert - center) / max_length * 2
obj_points_dict[object_id]=crop_vert
crop_pcd.vertices=o3d.utility.Vector3dVector(crop_vert)
save_path=os.path.join(point_save_folder,category+"_%d.ply"%(object_id))
o3d.io.write_triangle_mesh(save_path,crop_pcd)
proj_mat = np.eye(4)
scale_tran = np.eye(4)
scale_tran[0, 0], scale_tran[1, 1], scale_tran[2, 2] = max_length / 2, max_length / 2, max_length / 2
proj_mat = np.dot(proj_mat, scale_tran)
center_tran = np.eye(4)
center_tran[0:3, 3] = center
proj_mat = np.dot(center_tran, proj_mat)
invert_mat = np.eye(4)
invert_mat[2, 2] *= -1
proj_mat = np.dot(invert_mat, proj_mat)
proj_mat[0:3, 0:3] = np.dot(rotation,proj_mat[0:3, 0:3])
translate_mat = np.eye(4)
translate_mat[0:3, 3] = translate
proj_mat = np.dot(translate_mat, proj_mat)
'''tran mat is to align output to scene space'''
tran_mat=copy.deepcopy(proj_mat)
trans_mats[object_id]=tran_mat
tran_save_path=os.path.join(tran_save_folder,category+"_%d.npy"%(object_id))
np.save(tran_save_path,tran_mat)
unalign_mat = np.linalg.inv(align_matrix)
proj_mat = np.dot(unalign_mat.T, proj_mat)
pre_proj_mates[object_id]=proj_mat
ref=np.array([
[0,1.0], #Up
[-1.0,0],#Left
[0,1.0], #Right
[0.0,-1.0] #Down
]) #4*2
dir_list=[
"Down",
"Left",
"Right",
"Up"
]
for image_id in image_id_list:
color_path=os.path.join(color_folder,image_id+".jpg")
depth_path=os.path.join(depth_folder,image_id+".png")
pose_path=os.path.join(pose_folder,image_id+".txt")
color=cv2.imread(color_path)
height,width=color.shape[0:2]
depth=cv2.imread(depth_path,cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH)/1000.0
pose=np.loadtxt(pose_path)
for object_id in bboxes_dict:
object=bboxes_dict[object_id]
category=object['category']
sizes=object['size']
object_vox_coor=vox_coor*sizes[np.newaxis,:]
#print(np.amin(object_vox_coor,axis=0),np.amax(object_vox_coor,axis=0))
#print(sizes)
prev_proj_mat=pre_proj_mates[object_id]
wrd2cam_pose = np.linalg.inv(pose)
current_proj_mat = np.dot(wrd2cam_pose, prev_proj_mat)
K4=np.eye(4)
K4[0:3,0:3]=K
'''calibrate proj_mat'''
up_vectors = np.array([[0, 0, 0, 1.0],
[0, 0.5, 0, 1.0]])
up_vec_inimg = np.dot(up_vectors, current_proj_mat.T)
up_vec_inimg = np.dot(up_vec_inimg,K4.T)
up_x = up_vec_inimg[:, 0] / up_vec_inimg[:, 2]
up_y = up_vec_inimg[:, 1] / up_vec_inimg[:, 2]
pt1 = np.array((up_x[0], up_y[0]))
pt2 = np.array((up_x[1], up_y[1]))
up_dir = pt2 - pt1
# print(up_dir)
product = np.sum(up_dir[np.newaxis, :] * ref, axis=1)
max_ind = np.argmax(product)
direction = dir_list[max_ind]
sky_rot = rotate_mat(direction)
#final_proj_mat = np.dot(K4,final_proj_mat)
vox_homo=np.concatenate([object_vox_coor,np.ones((object_vox_coor.shape[0],1))],axis=1)
vox_proj=np.dot(vox_homo,current_proj_mat.T)
vox_proj=np.dot(vox_proj,K4.T)
vox_x=vox_proj[:,0]/vox_proj[:,2]
vox_y=vox_proj[:,1]/vox_proj[:,2]
if np.mean(vox_proj[:,2])>5:
continue
inside_mask=((vox_x<width-1) &(vox_x>0) &(vox_y<height-1) &(vox_y>0)).astype(np.float32)
infrustum_ratio=np.sum(inside_mask)/vox_x.shape[0]
if infrustum_ratio < 0.4 and category in ["chair", "stool"]:
continue
elif infrustum_ratio <0.2:
continue
#print(object_id,image_id,infrustum_ratio)
'''objects visibility check for every frame'''
vox_x_inside=vox_x[inside_mask>0].astype(np.int32)
vox_y_inside=vox_y[inside_mask>0].astype(np.int32)
vox_depth=vox_proj[inside_mask>0,2]
#print(depth.shape,np.amax(vox_y_inside),np.amax(vox_x_inside))
depth_sample=depth[vox_y_inside,vox_x_inside]
depth_mask=(depth_sample>0)&(depth_sample<10.0)
depth_sample=depth_sample[depth_mask]
vox_depth=vox_depth[depth_mask]
if vox_depth.shape[0]<100:
continue
occluded_ratio=np.sum(((vox_depth-depth_sample)>0.2).astype(np.float32))/vox_depth.shape[0]
if occluded_ratio>0.6 and category in ["chair"]: #chair is easily occluded, while table is not
continue
depth_near_ratio = np.sum((np.abs(vox_depth - depth_sample) < sizes.max() * 0.5).astype(np.float32)) / \
vox_depth.shape[0]
if depth_near_ratio < 0.2:
continue
'''make sure in every image, the object is upward'''
bbox=(np.amin(vox_x_inside),np.amin(vox_y_inside),np.amax(vox_x_inside),np.amax(vox_y_inside))
rot_image=rotate_image(color,direction)
bbox = rotate_bbox(bbox, direction, height, width)
crop_image=rot_image[bbox[1]:bbox[3],bbox[0]:bbox[2]]
crop_h, crop_w = crop_image.shape[0:2]
max_length = max(crop_h, crop_w)
if max_length<100:
continue
pad_image = np.zeros((max_length, max_length, 3))
if crop_h > crop_w:
margin = crop_h - crop_w
pad_image[:, margin // 2:margin // 2 + crop_w] = crop_image[:, :, :]
x_start, x_end = bbox[0] - margin // 2, margin // 2 + bbox[2]
y_start, y_end = bbox[1], bbox[3]
else:
margin = crop_w - crop_h
pad_image[margin // 2:margin // 2 + crop_h, :] = crop_image[:, :, :]
y_start, y_end = bbox[1] - margin // 2, bbox[3] + margin // 2
x_start, x_end = bbox[0], bbox[2]
pad_image=cv2.resize(pad_image,dsize=(224,224),interpolation=cv2.INTER_LINEAR)
image_save_folder = os.path.join(save_folder, "6_images", category + "_%d" % (object_id))
os.makedirs(image_save_folder, exist_ok=True)
image_save_path=os.path.join(image_save_folder,image_id+".jpg")
#print("saving to %s"%(image_save_path))
cv2.imwrite(image_save_path,pad_image)
proj_mat=np.dot(sky_rot,current_proj_mat)
new_K4 = rotate_K(K, direction)
new_K4[0, 2] -= x_start
new_K4[1, 2] -= y_start
new_K4[0] = new_K4[0] / max_length * 224
new_K4[1] = new_K4[1] / max_length * 224
proj_mat = np.dot(new_K4, proj_mat)
proj_save_folder=os.path.join(save_folder,"8_proj_matrix",category+"_%d"%(object_id))
os.makedirs(proj_save_folder,exist_ok=True)
proj_save_path=os.path.join(proj_save_folder,image_id+".npy")
np.save(proj_save_path,proj_mat)
'''debug proj matrix'''
if args.debug:
proj_save_folder=os.path.join(save_folder,"9_proj_images",category+"_%d"%(object_id))
os.makedirs(proj_save_folder,exist_ok=True)
canvas=copy.deepcopy(pad_image)
par_points=obj_points_dict[object_id]
par_homo=np.concatenate([par_points,np.ones((par_points.shape[0],1))],axis=1)
par_inimg=np.dot(par_homo,proj_mat.T)
x=par_inimg[:,0]/par_inimg[:,2]
y=par_inimg[:,1]/par_inimg[:,2]
x=np.clip(x,a_min=0,a_max=223).astype(np.int32)
y=np.clip(y,a_min=0,a_max=223).astype(np.int32)
canvas[y,x]=np.array([[0,255,0]])
proj_save_path=os.path.join(proj_save_folder,image_id+".jpg")
cv2.imwrite(proj_save_path,canvas)