import numpy as np import os import argparse import open3d as o3d import glob import cv2 import copy def get_roll_rot(angle): ca=np.cos(angle) sa=np.sin(angle) rot=np.array([ [ca,-sa,0,0], [sa,ca,0,0], [0,0,1,0], [0,0,0,1] ]) return rot def rotate_mat(direction): if direction == 'Up': return np.eye(4) elif direction == 'Left': rot_mat=get_roll_rot(np.pi/2) elif direction == 'Right': rot_mat=get_roll_rot(-np.pi/2) elif direction == 'Down': rot_mat=get_roll_rot(np.pi) else: raise Exception(f'No such direction (={direction}) rotation') return rot_mat def rotate_K(K,direction): if direction == 'Up' or direction=="Down": new_K4=np.eye(4) new_K4[0:3,0:3]=copy.deepcopy(K) return new_K4 elif direction == 'Left' or direction =="Right": fx,fy,cx,cy=K[0,0],K[1,1],K[0,2],K[1,2] new_K4 = np.array([ [fy, 0, cy, 0], [0, fx, cx, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]) return new_K4 def rotate_bbox(bbox,direction, H,W): x_min,y_min,x_max,y_max=bbox[0:4] if direction == 'Up': return bbox elif direction == 'Left': #print(W-bbox[1],W-bbox[3]) new_bbox=[min(H-bbox[1],H-bbox[3]),bbox[0],max(H-bbox[1],H-bbox[3]),bbox[2]] elif direction == 'Right': new_bbox=[bbox[1],min(W-bbox[0],W-bbox[2]),bbox[3],max(W-bbox[0],W-bbox[2])] elif direction == 'Down': new_bbox=[min(W-x_min,W-x_max),min(H-y_min,H-y_max),max(W-x_min,W-x_max),max(H-y_min,H-y_max)] else: raise Exception(f'No such direction (={direction}) rotation') return new_bbox def rotate_image(img, direction): if direction == 'Up': pass elif direction == 'Left': img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE) elif direction == 'Right': img = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE) elif direction == 'Down': img = cv2.rotate(img, cv2.ROTATE_180) else: raise Exception(f'No such direction (={direction}) rotation') return img parser=argparse.ArgumentParser() parser.add_argument("--data_folder",type=str,required=True) parser.add_argument("--save_dir",type=str,default=r"../example_process_data") parser.add_argument("--debug",action="store_true",default=False) args=parser.parse_args() print("processing %s"%(args.data_folder)) data_folder=args.data_folder scene_name=os.path.basename(data_folder) save_folder=os.path.join(args.save_dir,scene_name) os.makedirs(save_folder,exist_ok=True) color_folder=os.path.join(data_folder,"color") depth_folder=os.path.join(data_folder,"depth") pose_folder=os.path.join(data_folder,"pose") print(color_folder) color_list=glob.glob(color_folder+"/*.jpg") image_id_list=[os.path.basename(item)[0:-4] for item in color_list] image_id_list.sort() bbox_path=os.path.join(data_folder,"objects.npy") bboxes_dict=np.load(bbox_path,allow_pickle=True).item() intrinsic_path=os.path.join(data_folder,"intrinsic","intrinsic_color.txt") K=np.loadtxt(intrinsic_path) align_path=os.path.join(data_folder,"alignment_matrix.txt") align_matrix=np.loadtxt(align_path) if align_matrix.shape[0]==3: new_align_matrix=np.eye(4) new_align_matrix[0:3,0:3]=align_matrix align_matrix=new_align_matrix mesh_path=os.path.join(data_folder,"fused_mesh.ply") o3d_mesh=o3d.io.read_triangle_mesh(mesh_path) o3d_vertices = np.array(o3d_mesh.vertices) o3d_vert_homo=np.concatenate([o3d_vertices,np.ones([o3d_vertices.shape[0],1])],axis=1) align_o3d_vertices = np.dot(o3d_vert_homo,align_matrix)[:,0:3] o3d_mesh.vertices = o3d.utility.Vector3dVector(align_o3d_vertices) align_mesh_save_path=os.path.join(save_folder,"align_mesh.ply") o3d.io.write_triangle_mesh(align_mesh_save_path,o3d_mesh) x=np.linspace(-1,1,10) y=np.linspace(-1,1,10) z=np.linspace(-1,1,10) X,Y,Z=np.meshgrid(x,y,z,indexing='ij') vox_coor=np.concatenate([X[:,:,:,np.newaxis],Y[:,:,:,np.newaxis],Z[:,:,:,np.newaxis]],axis=-1) vox_coor=np.reshape(vox_coor,(-1,3)) #print(np.amin(vox_coor,axis=0),np.amax(vox_coor,axis=0)) pre_proj_mates={} obj_points_dict={} trans_mats={} point_save_folder=os.path.join(save_folder,"5_partial_points") os.makedirs(point_save_folder,exist_ok=True) tran_save_folder=os.path.join(save_folder,"10_tran_matrix") os.makedirs(tran_save_folder,exist_ok=True) for object_id in bboxes_dict: object = bboxes_dict[object_id] category = object['category'] sizes = object['size'] sizes *= 1.1 transform_matrix_t = np.array(object['transform']).reshape([4, 4]) translate = transform_matrix_t[:3, 3] rotation = transform_matrix_t[:3, :3] bbox_o3d = o3d.geometry.OrientedBoundingBox(translate.reshape([3, 1]), rotation, np.array(sizes).reshape([3, 1])) crop_pcd = o3d_mesh.crop(bbox_o3d) crop_vert = np.asarray(crop_pcd.vertices) org_crop_vert = crop_vert[:, :] crop_vert = crop_vert - translate crop_vert = np.dot(crop_vert,np.linalg.inv(rotation).T) crop_vert[:, 2] *= -1 bb_min, bb_max = np.amin(crop_vert, axis=0), np.amax(crop_vert, axis=0) max_length = (bb_max - bb_min).max() center = (bb_max + bb_min) / 2 crop_vert = (crop_vert - center) / max_length * 2 obj_points_dict[object_id]=crop_vert crop_pcd.vertices=o3d.utility.Vector3dVector(crop_vert) save_path=os.path.join(point_save_folder,category+"_%d.ply"%(object_id)) o3d.io.write_triangle_mesh(save_path,crop_pcd) proj_mat = np.eye(4) scale_tran = np.eye(4) scale_tran[0, 0], scale_tran[1, 1], scale_tran[2, 2] = max_length / 2, max_length / 2, max_length / 2 proj_mat = np.dot(proj_mat, scale_tran) center_tran = np.eye(4) center_tran[0:3, 3] = center proj_mat = np.dot(center_tran, proj_mat) invert_mat = np.eye(4) invert_mat[2, 2] *= -1 proj_mat = np.dot(invert_mat, proj_mat) proj_mat[0:3, 0:3] = np.dot(rotation,proj_mat[0:3, 0:3]) translate_mat = np.eye(4) translate_mat[0:3, 3] = translate proj_mat = np.dot(translate_mat, proj_mat) '''tran mat is to align output to scene space''' tran_mat=copy.deepcopy(proj_mat) trans_mats[object_id]=tran_mat tran_save_path=os.path.join(tran_save_folder,category+"_%d.npy"%(object_id)) np.save(tran_save_path,tran_mat) unalign_mat = np.linalg.inv(align_matrix) proj_mat = np.dot(unalign_mat.T, proj_mat) pre_proj_mates[object_id]=proj_mat ref=np.array([ [0,1.0], #Up [-1.0,0],#Left [0,1.0], #Right [0.0,-1.0] #Down ]) #4*2 dir_list=[ "Down", "Left", "Right", "Up" ] for image_id in image_id_list: color_path=os.path.join(color_folder,image_id+".jpg") depth_path=os.path.join(depth_folder,image_id+".png") pose_path=os.path.join(pose_folder,image_id+".txt") color=cv2.imread(color_path) height,width=color.shape[0:2] depth=cv2.imread(depth_path,cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH)/1000.0 pose=np.loadtxt(pose_path) for object_id in bboxes_dict: object=bboxes_dict[object_id] category=object['category'] sizes=object['size'] object_vox_coor=vox_coor*sizes[np.newaxis,:] #print(np.amin(object_vox_coor,axis=0),np.amax(object_vox_coor,axis=0)) #print(sizes) prev_proj_mat=pre_proj_mates[object_id] wrd2cam_pose = np.linalg.inv(pose) current_proj_mat = np.dot(wrd2cam_pose, prev_proj_mat) K4=np.eye(4) K4[0:3,0:3]=K '''calibrate proj_mat''' up_vectors = np.array([[0, 0, 0, 1.0], [0, 0.5, 0, 1.0]]) up_vec_inimg = np.dot(up_vectors, current_proj_mat.T) up_vec_inimg = np.dot(up_vec_inimg,K4.T) up_x = up_vec_inimg[:, 0] / up_vec_inimg[:, 2] up_y = up_vec_inimg[:, 1] / up_vec_inimg[:, 2] pt1 = np.array((up_x[0], up_y[0])) pt2 = np.array((up_x[1], up_y[1])) up_dir = pt2 - pt1 # print(up_dir) product = np.sum(up_dir[np.newaxis, :] * ref, axis=1) max_ind = np.argmax(product) direction = dir_list[max_ind] sky_rot = rotate_mat(direction) #final_proj_mat = np.dot(K4,final_proj_mat) vox_homo=np.concatenate([object_vox_coor,np.ones((object_vox_coor.shape[0],1))],axis=1) vox_proj=np.dot(vox_homo,current_proj_mat.T) vox_proj=np.dot(vox_proj,K4.T) vox_x=vox_proj[:,0]/vox_proj[:,2] vox_y=vox_proj[:,1]/vox_proj[:,2] if np.mean(vox_proj[:,2])>5: continue inside_mask=((vox_x0) &(vox_y0)).astype(np.float32) infrustum_ratio=np.sum(inside_mask)/vox_x.shape[0] if infrustum_ratio < 0.4 and category in ["chair", "stool"]: continue elif infrustum_ratio <0.2: continue #print(object_id,image_id,infrustum_ratio) '''objects visibility check for every frame''' vox_x_inside=vox_x[inside_mask>0].astype(np.int32) vox_y_inside=vox_y[inside_mask>0].astype(np.int32) vox_depth=vox_proj[inside_mask>0,2] #print(depth.shape,np.amax(vox_y_inside),np.amax(vox_x_inside)) depth_sample=depth[vox_y_inside,vox_x_inside] depth_mask=(depth_sample>0)&(depth_sample<10.0) depth_sample=depth_sample[depth_mask] vox_depth=vox_depth[depth_mask] if vox_depth.shape[0]<100: continue occluded_ratio=np.sum(((vox_depth-depth_sample)>0.2).astype(np.float32))/vox_depth.shape[0] if occluded_ratio>0.6 and category in ["chair"]: #chair is easily occluded, while table is not continue depth_near_ratio = np.sum((np.abs(vox_depth - depth_sample) < sizes.max() * 0.5).astype(np.float32)) / \ vox_depth.shape[0] if depth_near_ratio < 0.2: continue '''make sure in every image, the object is upward''' bbox=(np.amin(vox_x_inside),np.amin(vox_y_inside),np.amax(vox_x_inside),np.amax(vox_y_inside)) rot_image=rotate_image(color,direction) bbox = rotate_bbox(bbox, direction, height, width) crop_image=rot_image[bbox[1]:bbox[3],bbox[0]:bbox[2]] crop_h, crop_w = crop_image.shape[0:2] max_length = max(crop_h, crop_w) if max_length<100: continue pad_image = np.zeros((max_length, max_length, 3)) if crop_h > crop_w: margin = crop_h - crop_w pad_image[:, margin // 2:margin // 2 + crop_w] = crop_image[:, :, :] x_start, x_end = bbox[0] - margin // 2, margin // 2 + bbox[2] y_start, y_end = bbox[1], bbox[3] else: margin = crop_w - crop_h pad_image[margin // 2:margin // 2 + crop_h, :] = crop_image[:, :, :] y_start, y_end = bbox[1] - margin // 2, bbox[3] + margin // 2 x_start, x_end = bbox[0], bbox[2] pad_image=cv2.resize(pad_image,dsize=(224,224),interpolation=cv2.INTER_LINEAR) image_save_folder = os.path.join(save_folder, "6_images", category + "_%d" % (object_id)) os.makedirs(image_save_folder, exist_ok=True) image_save_path=os.path.join(image_save_folder,image_id+".jpg") #print("saving to %s"%(image_save_path)) cv2.imwrite(image_save_path,pad_image) proj_mat=np.dot(sky_rot,current_proj_mat) new_K4 = rotate_K(K, direction) new_K4[0, 2] -= x_start new_K4[1, 2] -= y_start new_K4[0] = new_K4[0] / max_length * 224 new_K4[1] = new_K4[1] / max_length * 224 proj_mat = np.dot(new_K4, proj_mat) proj_save_folder=os.path.join(save_folder,"8_proj_matrix",category+"_%d"%(object_id)) os.makedirs(proj_save_folder,exist_ok=True) proj_save_path=os.path.join(proj_save_folder,image_id+".npy") np.save(proj_save_path,proj_mat) '''debug proj matrix''' if args.debug: proj_save_folder=os.path.join(save_folder,"9_proj_images",category+"_%d"%(object_id)) os.makedirs(proj_save_folder,exist_ok=True) canvas=copy.deepcopy(pad_image) par_points=obj_points_dict[object_id] par_homo=np.concatenate([par_points,np.ones((par_points.shape[0],1))],axis=1) par_inimg=np.dot(par_homo,proj_mat.T) x=par_inimg[:,0]/par_inimg[:,2] y=par_inimg[:,1]/par_inimg[:,2] x=np.clip(x,a_min=0,a_max=223).astype(np.int32) y=np.clip(y,a_min=0,a_max=223).astype(np.int32) canvas[y,x]=np.array([[0,255,0]]) proj_save_path=os.path.join(proj_save_folder,image_id+".jpg") cv2.imwrite(proj_save_path,canvas)