import torch class PositionalEmbedding(torch.nn.Module): def __init__(self, num_channels, max_positions=10000, endpoint=False): super().__init__() self.num_channels = num_channels self.max_positions = max_positions self.endpoint = endpoint def forward(self, x): freqs = torch.arange(start=0, end=self.num_channels//2, dtype=torch.float32, device=x.device) freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0)) freqs = (1 / self.max_positions) ** freqs x = x.ger(freqs.to(x.dtype)) x = torch.cat([x.cos(), x.sin()], dim=1) return x