import torch def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module class StackedRandomGenerator: def __init__(self, device, seeds): super().__init__() self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds] def randn(self, size, **kwargs): assert size[0] == len(self.generators) return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators]) def randn_like(self, input): return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device) def randint(self, *args, size, **kwargs): assert size[0] == len(self.generators) return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators])