File size: 11,697 Bytes
ccaf8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85b5da3
 
ccaf8ca
85b5da3
ccaf8ca
 
 
e9be69e
85b5da3
 
 
 
2bd35a0
ccaf8ca
 
 
 
 
a96d344
684bb04
 
 
ccaf8ca
684bb04
 
 
a96d344
 
 
 
 
684bb04
 
 
 
ccaf8ca
a96d344
ccaf8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6585180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccaf8ca
 
85b5da3
e9be69e
 
 
 
 
 
 
 
 
 
 
ccaf8ca
 
 
 
 
 
 
e9be69e
ccaf8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be69e
ccaf8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd35a0
89d61d5
ccaf8ca
 
 
 
 
 
 
 
 
 
 
 
 
89d61d5
ccaf8ca
2bd35a0
ccaf8ca
 
 
 
 
 
 
 
 
 
 
57c06b4
ccaf8ca
2bd35a0
 
 
ccaf8ca
57c06b4
ccaf8ca
 
 
 
 
89d61d5
 
 
 
ccaf8ca
 
 
 
 
 
 
 
 
89d61d5
57c06b4
89d61d5
ccaf8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470cf7c
 
 
ccaf8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# -*- coding: utf-8 -*-
"""

easyocr.py - A wrapper for easyocr to convert pdf to images to text
"""

import logging
from pathlib import Path

logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s %(levelname)s %(message)s",
    datefmt="%m/%d/%Y %I:%M:%S",
)


import os
import pprint as pp
import re
import shutil
import time
from datetime import date, datetime
from os.path import basename, dirname, join
from pathlib import Path

from cleantext import clean
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from libretranslatepy import LibreTranslateAPI
from natsort import natsorted
from spellchecker import SpellChecker
from tqdm.auto import tqdm


def simple_rename(filepath, target_ext=".txt"):
    _fp = Path(filepath)
    basename = _fp.stem
    return f"OCR_{basename}_{target_ext}"


def rm_local_text_files(name_contains="RESULT_"):
    """
    rm_local_text_files - remove local text files

    Args:
        name_contains (str, optional): [description]. Defaults to "OCR_".
    """
    files = [
        f
        for f in Path.cwd().iterdir()
        if f.is_file() and f.suffix == ".txt" and name_contains in f.name
    ]
    logging.info(f"removing {len(files)} text files")
    for f in files:
        os.remove(f)
    logging.info("done")


def corr(
    s: str,
    add_space_when_numerics=False,
    exceptions=["e.g.", "i.e.", "etc.", "cf.", "vs.", "p."],
) -> str:
    """corrects spacing in a string

    Args:
        s (str): the string to correct
        add_space_when_numerics (bool, optional): [add a space when a period is between two numbers, example 5.73]. Defaults to False.
        exceptions (list, optional): [do not change these substrings]. Defaults to ['e.g.', 'i.e.', 'etc.', 'cf.', 'vs.', 'p.'].

    Returns:
        str: the corrected string
    """
    if add_space_when_numerics:
        s = re.sub(r"(\d)\.(\d)", r"\1. \2", s)

    s = re.sub(r"\s+", " ", s)
    s = re.sub(r'\s([?.!"](?:\s|$))', r"\1", s)

    # fix space before apostrophe
    s = re.sub(r"\s\'", r"'", s)
    # fix space after apostrophe
    s = re.sub(r"'\s", r"'", s)
    # fix space before comma
    s = re.sub(r"\s,", r",", s)

    for e in exceptions:
        expected_sub = re.sub(r"\s", "", e)
        s = s.replace(expected_sub, e)

    return s


def fix_punct_spaces(string):
    """
    fix_punct_spaces - replace spaces around punctuation with punctuation. For example, "hello , there" -> "hello, there"

    Parameters
    ----------
    string : str, required, input string to be corrected

    Returns
    -------
    str, corrected string
    """

    fix_spaces = re.compile(r"\s*([?!.,]+(?:\s+[?!.,]+)*)\s*")
    string = fix_spaces.sub(lambda x: "{} ".format(x.group(1).replace(" ", "")), string)
    string = string.replace(" ' ", "'")
    string = string.replace(' " ', '"')
    return string.strip()


def clean_OCR(ugly_text: str):
    """
    clean_OCR - clean the OCR text files.

    Parameters
    ----------
    ugly_text : str, required, input string to be cleaned

    Returns
    -------
    str, cleaned string
    """
    # Remove all the newlines.
    cleaned_text = ugly_text.replace("\n", " ")
    # Remove all the tabs.
    cleaned_text = cleaned_text.replace("\t", " ")
    # Remove all the double spaces.
    cleaned_text = cleaned_text.replace("  ", " ")
    # Remove all the spaces at the beginning of the text.
    cleaned_text = cleaned_text.lstrip()
    # remove all instances of "- " and " - "
    cleaned_text = cleaned_text.replace("- ", "")
    cleaned_text = cleaned_text.replace(" -", "")
    return fix_punct_spaces(cleaned_text)


def move2completed(from_dir, filename, new_folder="completed", verbose=False):

    # this is the better version
    old_filepath = join(from_dir, filename)

    new_filedirectory = join(from_dir, new_folder)

    if not os.path.isdir(new_filedirectory):
        os.mkdir(new_filedirectory)
        if verbose:
            print("created new directory for files at: \n", new_filedirectory)
    new_filepath = join(new_filedirectory, filename)

    try:
        shutil.move(old_filepath, new_filepath)
        logging.info("successfully moved the file {} to */completed.".format(filename))
    except:
        logging.info(
            "ERROR! unable to move file to \n{}. Please investigate".format(
                new_filepath
            )
        )


"""## pdf2text functions

"""


custom_replace_list = {
    "t0": "to",
    "'$": "'s",
    ",,": ", ",
    "_ ": " ",
    " '": "'",
}

replace_corr_exceptions = {
    "i. e.": "i.e.",
    "e. g.": "e.g.",
    "e. g": "e.g.",
    " ,": ",",
}


spell = SpellChecker()


def check_word_spelling(word: str) -> bool:
    """
    check_word_spelling - check the spelling of a word

    Args:
        word (str): word to check

    Returns:
        bool: True if word is spelled correctly, False if not
    """

    misspelled = spell.unknown([word])

    return len(misspelled) == 0


def eval_and_replace(text: str, match_token: str = "- ") -> str:
    """
    eval_and_replace  - conditionally replace all instances of a substring in a string based on whether the eliminated substring results in a valid word

    Args:
        text (str): text to evaluate
        match_token (str, optional): token to replace. Defaults to "- ".

    Returns:
        str:  text with replaced tokens
    """

    try:
        if match_token not in text:
            return text
        else:
            while True:
                full_before_text = text.split(match_token, maxsplit=1)[0]
                before_text = [
                    char for char in full_before_text.split()[-1] if char.isalpha()
                ]
                before_text = "".join(before_text)
                full_after_text = text.split(match_token, maxsplit=1)[-1]
                after_text = [char for char in full_after_text.split()[0] if char.isalpha()]
                after_text = "".join(after_text)
                full_text = before_text + after_text
                if check_word_spelling(full_text):
                    text = full_before_text + full_after_text
                else:
                    text = full_before_text + " " + full_after_text
                if match_token not in text:
                    break
    except Exception as e:
        logging.error(f"Error spell-checking OCR output, returning default text:\t{e}")
    return text


def cleantxt_ocr(ugly_text, lower=False, lang: str = "en") -> str:
    """
    cleantxt_ocr - clean text from OCR

    Args:
        ugly_text (str): text to clean
        lower (bool, optional): _description_. Defaults to False.
        lang (str, optional): _description_. Defaults to "en".

    Returns:
        str: cleaned text
    """
    # a wrapper for clean text with options different than default

    # https://pypi.org/project/clean-text/
    cleaned_text = clean(
        ugly_text,
        fix_unicode=True,  # fix various unicode errors
        to_ascii=True,  # transliterate to closest ASCII representation
        lower=lower,  # lowercase text
        no_line_breaks=True,  # fully strip line breaks as opposed to only normalizing them
        no_urls=True,  # replace all URLs with a special token
        no_emails=True,  # replace all email addresses with a special token
        no_phone_numbers=False,  # replace all phone numbers with a special token
        no_numbers=False,  # replace all numbers with a special token
        no_digits=False,  # replace all digits with a special token
        no_currency_symbols=False,  # replace all currency symbols with a special token
        no_punct=False,  # remove punctuations
        replace_with_punct="",  # instead of removing punctuations you may replace them
        replace_with_url="<URL>",
        replace_with_email="<EMAIL>",
        replace_with_phone_number="<PHONE>",
        replace_with_number="<NUM>",
        replace_with_digit="0",
        replace_with_currency_symbol="<CUR>",
        lang=lang,  # set to 'de' for German special handling
    )

    return cleaned_text


def format_ocr_out(OCR_data):

    if isinstance(OCR_data, list):
        text = " ".join(OCR_data)
    else:
        text = str(OCR_data)
    _clean = cleantxt_ocr(text)
    return corr(_clean)


def postprocess(text: str) -> str:
    """to be used after recombining the lines"""

    proc = corr(cleantxt_ocr(text))

    for k, v in custom_replace_list.items():
        proc = proc.replace(str(k), str(v))

    proc = corr(proc)

    for k, v in replace_corr_exceptions.items():
        proc = proc.replace(str(k), str(v))

    return eval_and_replace(proc)


def result2text(result, as_text=False) -> str or list:
    """Convert OCR result to text"""

    full_doc = []
    for i, page in enumerate(result.pages, start=1):
        text = ""
        for block in page.blocks:
            text += "\n\t"
            for line in block.lines:
                for word in line.words:
                    # print(dir(word))
                    text += word.value + " "
        full_doc.append(text)

    return "\n".join(full_doc) if as_text else full_doc


def convert_PDF_to_Text(
    PDF_file,
    ocr_model=None,
    max_pages: int = 20,
):

    st = time.perf_counter()
    PDF_file = Path(PDF_file)
    ocr_model = ocr_predictor(pretrained=True) if ocr_model is None else ocr_model
    logging.info(f"starting OCR on {PDF_file.name}")
    doc = DocumentFile.from_pdf(PDF_file)
    truncated = False
    if len(doc) > max_pages:
        logging.warning(
            f"PDF has {len(doc)} pages, which is more than {max_pages}.. truncating"
        )
        doc = doc[:max_pages]
        truncated = True

    # Analyze
    logging.info(f"running OCR on {len(doc)} pages")
    result = ocr_model(doc)
    raw_text = result2text(result)
    proc_text = [format_ocr_out(r) for r in raw_text]
    fin_text = [postprocess(t) for t in proc_text]

    ocr_results = "\n\n".join(fin_text)

    fn_rt = time.perf_counter() - st

    logging.info("OCR complete")

    results_dict = {
        "num_pages": len(doc),
        "runtime": round(fn_rt, 2),
        "date": str(date.today()),
        "converted_text": ocr_results,
        "truncated": truncated,
        "length": len(ocr_results),
    }

    return results_dict


# @title translation functions

lt = LibreTranslateAPI("https://translate.astian.org/")


def translate_text(text, source_l, target_l="en"):

    return str(lt.translate(text, source_l, target_l))


def translate_doc(filepath, lang_start, lang_end="en", verbose=False):
    """translate a document from lang_start to lang_end

        {'code': 'en', 'name': 'English'},
    {'code': 'fr', 'name': 'French'},
    {'code': 'de', 'name': 'German'},
    {'code': 'it', 'name': 'Italian'},"""

    src_folder = dirname(filepath)
    src_folder = Path(src_folder)
    trgt_folder = src_folder / f"translated_{lang_end}"
    trgt_folder.mkdir(exist_ok=True)
    with open(filepath, "r", encoding="utf-8", errors="ignore") as f:
        foreign_t = f.readlines()
    in_name = basename(filepath)
    translated_doc = []
    for line in tqdm(
        foreign_t, total=len(foreign_t), desc="translating {}...".format(in_name[:10])
    ):
        translated_line = translate_text(line, lang_start, lang_end)
        translated_doc.append(translated_line)
    t_out_name = "[To {}]".format(lang_end) + simple_rename(in_name) + ".txt"
    out_path = join(trgt_folder, t_out_name)
    with open(out_path, "w", encoding="utf-8", errors="ignore") as f_o:
        f_o.writelines(translated_doc)
    if verbose:
        print("finished translating the document! - ", datetime.now())
    return out_path