Spaces:
Runtime error
Runtime error
File size: 8,552 Bytes
ac6c40f 57616af ac6c40f d1a58c9 57616af d1a58c9 ac6c40f 57616af ac6c40f 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 ac6c40f 57616af d1a58c9 57616af d1a58c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import streamlit as st
from .streamlit_utils import make_text_input
from .streamlit_utils import (
make_multiselect,
make_selectbox,
make_text_area,
make_text_input,
make_radio,
)
N_FIELDS_ORIGINAL = 4
N_FIELDS_LANGUAGE = 12
N_FIELDS_ANNOTATIONS = 0
N_FIELDS_CONSENT = 0
N_FIELDS_PII = 0
N_FIELDS_MAINTENANCE = 0
N_FIELDS_GEM = 0
N_FIELDS = (
N_FIELDS_ORIGINAL
+ N_FIELDS_LANGUAGE
+ N_FIELDS_ANNOTATIONS
+ N_FIELDS_CONSENT
+ N_FIELDS_PII
+ N_FIELDS_MAINTENANCE
+ N_FIELDS_GEM
)
"""
What was the selection criteria? [Describe the process for selecting instances to include in the dataset, including any tools used.]
"""
def curation_page():
st.session_state.card_dict["curation"] = st.session_state.card_dict.get(
"curation", {}
)
with st.expander("Original Curation", expanded=False):
key_pref = ["curation", "original"]
st.session_state.card_dict["curation"]["original"] = st.session_state.card_dict[
"curation"
].get("original", {})
make_text_area(
label="Original curation rationale",
key_list=key_pref + ["rationale"],
help="Describe the curation rationale behind the original dataset(s).",
)
make_text_area(
label="What was the communicative goal?",
key_list=key_pref + ["communicative"],
help="Describe the communicative goal that the original dataset(s) was trying to represent.",
)
make_radio(
label="Is the dataset aggregated from different data sources?",
options=["no", "yes"],
key_list=key_pref + ["is-aggregated"],
help="e.g. Wikipedia, movi dialogues, etc.",
)
make_text_area(
label="If yes, list the sources",
key_list=key_pref + ["aggregated-sources"],
help="Otherwise, type N/A",
)
with st.expander("Language Data", expanded=False):
key_pref = ["curation", "language"]
st.session_state.card_dict["curation"]["language"] = st.session_state.card_dict[
"curation"
].get("language", {})
make_multiselect(
label="How was the language data obtained?",
options=[
"found",
"created for the dataset",
"crowdsourced",
"machine-generated",
"other",
],
key_list=key_pref + ["obtained"],
)
make_multiselect(
label="If found, where from?",
options=["website", "offline media collection", "other", "N/A"],
key_list=key_pref + ["found"],
help="select N/A if none of the language data was found",
)
make_multiselect(
label="If crowdsourced, where from?",
options=[
"Amazon Mechanical Turk",
"other crowdworker platform",
"participatory experiment",
"other",
"N/A",
],
key_list=key_pref + ["crowdsourced"],
help="select N/A if none of the language data was crowdsourced",
)
make_text_area(
label="If created for the dataset, describe the creation process.",
key_list=key_pref + ["created"],
)
make_text_area(
label="What further information do we have on the language producers?",
key_list=key_pref + ["producers-description"],
help="Provide a description of the context in which the language was produced and who produced it.",
)
make_text_input(
label="If text was machine-generated for the dataset, provide a link to the generation method if available (N/A otherwise).",
key_list=key_pref + ["machine-generated"],
help="if the generation code is unavailable, enter N/A",
)
make_selectbox(
label="Was the text validated by a different worker or a data curator?",
options=[
"not validated",
"validated by crowdworker",
"validated by data curator",
"other",
],
key_list=key_pref + ["validated"],
help="this question is about human or human-in-the-loop validation only",
)
make_multiselect(
label="In what kind of organization did the curation happen?",
options=["industry", "academic", "independent", "other"],
key_list=key_pref + ["organization-type"],
)
make_text_input(
label="Name the organization(s).",
key_list=key_pref + ["organization-names"],
help="comma-separated",
)
make_text_area(
label="How was the text data pre-processed? (Enter N/A if the text was not pre-processed)",
key_list=key_pref + ["pre-processed"],
help="List the steps in preprocessing the data for the dataset. Enter N/A if no steps were taken.",
)
make_selectbox(
label="Were text instances selected or filtered?",
options=["not filtered", "manually", "algorithmically", "hybrid"],
key_list=key_pref + ["is-filtered"],
)
make_text_area(
label="What were the selection criteria?",
key_list=key_pref + ["filtered-criteria"],
help="Describe the process for selecting instances to include in the dataset, including any tools used. If no selection was done, enter N/A.",
)
with st.expander("Structured Annotations", expanded=False):
key_pref = ["curation", "annotations"]
st.session_state.card_dict["curation"][
"annotations"
] = st.session_state.card_dict["curation"].get("annotations", {})
with st.expander("Consent", expanded=False):
key_pref = ["curation", "consent"]
st.session_state.card_dict["curation"]["consent"] = st.session_state.card_dict[
"curation"
].get("consent", {})
with st.expander("Private Identifying Information (PII)", expanded=False):
key_pref = ["curation", "pii"]
st.session_state.card_dict["curation"]["pii"] = st.session_state.card_dict[
"curation"
].get("pii", {})
with st.expander("Maintenance", expanded=False):
key_pref = ["curation", "maintenance"]
st.session_state.card_dict["curation"][
"maintenance"
] = st.session_state.card_dict["curation"].get("maintenance", {})
with st.expander("GEM Additional Curation", expanded=False):
key_pref = ["curation", "gem"]
st.session_state.card_dict["curation"]["gem"] = st.session_state.card_dict[
"curation"
].get("gem", {})
def curation_summary():
total_filled = sum(
[len(dct) for dct in st.session_state.card_dict.get("curation", {}).values()]
)
with st.expander(
f"Dataset Curation Completion - {total_filled} of {N_FIELDS}", expanded=False
):
completion_markdown = ""
completion_markdown += (
f"- **Overall competion:**\n - {total_filled} of {N_FIELDS} fields\n"
)
completion_markdown += f"- **Sub-section - Original Curation:**\n - {len(st.session_state.card_dict.get('curation', {}).get('original', {}))} of {N_FIELDS_ORIGINAL} fields\n"
completion_markdown += f"- **Sub-section - Language Data:**\n - {len(st.session_state.card_dict.get('curation', {}).get('language', {}))} of {N_FIELDS_LANGUAGE} fields\n"
completion_markdown += f"- **Sub-section - Structured Annotations:**\n - {len(st.session_state.card_dict.get('curation', {}).get('annotations', {}))} of {N_FIELDS_ANNOTATIONS} fields\n"
completion_markdown += f"- **Sub-section - Consent:**\n - {len(st.session_state.card_dict.get('curation', {}).get('consent', {}))} of {N_FIELDS_CONSENT} fields\n"
completion_markdown += f"- **Sub-section - PII:**\n - {len(st.session_state.card_dict.get('curation', {}).get('pii', {}))} of {N_FIELDS_PII} fields\n"
completion_markdown += f"- **Sub-section - Maintenance:**\n - {len(st.session_state.card_dict.get('curation', {}).get('maintenance', {}))} of {N_FIELDS_MAINTENANCE} fields\n"
completion_markdown += f"- **Sub-section - GEM Curation:**\n - {len(st.session_state.card_dict.get('curation', {}).get('gem', {}))} of {N_FIELDS_GEM} fields\n"
st.markdown(completion_markdown)
|