File size: 5,764 Bytes
a557d54
 
c00ae85
 
a557d54
c00ae85
 
a557d54
94a4e9f
c00ae85
6d09ca9
a557d54
 
 
 
c00ae85
338fec2
 
 
c00ae85
 
2acc05f
 
 
 
 
 
 
 
 
 
 
 
 
 
6d09ca9
2acc05f
 
 
a557d54
c00ae85
 
6d09ca9
a353f77
a557d54
6d09ca9
 
 
 
 
 
 
 
 
 
 
 
 
a557d54
a353f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acc05f
 
 
 
a353f77
 
 
9757ddd
 
 
4e25e73
2acc05f
4e25e73
2acc05f
4e25e73
6d09ca9
 
 
 
 
 
a557d54
a353f77
a557d54
6d09ca9
 
338fec2
 
 
 
 
 
6d09ca9
 
 
 
 
338fec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d09ca9
 
 
 
 
 
 
 
c00ae85
338fec2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import json
import os
import shutil
from datetime import datetime
from pathlib import Path

import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import HfApi, Repository

from utils import http_post, validate_json

if Path(".env").is_file():
    load_dotenv(".env")

HF_TOKEN = os.getenv("HF_TOKEN")
AUTONLP_USERNAME = os.getenv("AUTONLP_USERNAME")
HF_AUTONLP_BACKEND_API = os.getenv("HF_AUTONLP_BACKEND_API")
LOCAL_REPO = "submission_repo"


###########
### APP ###
###########
st.title("GEM Submissions")
st.markdown(
    """
Welcome to the [GEM benchmark](https://gem-benchmark.com/)! GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation, both through human annotations and automated Metrics.

GEM aims to:

- measure NLG progress across many NLG tasks across languages.
- audit data and models and present results via data cards and model robustness reports.
- develop standards for evaluation of generated text using both automated and human metrics.

Use this page to submit your system's predictions to the benchmark.
"""
)

with st.form(key="form"):
    # Flush local repo
    shutil.rmtree(LOCAL_REPO, ignore_errors=True)
    submission_errors = 0
    uploaded_file = st.file_uploader("Upload submission.json file", type=["json"])

    if uploaded_file:
        if uploaded_file.name != "submission.json":
            st.error(f"β›” Invalid filename. Please upload a submission.json file.")
            submission_errors += 1
        else:
            data = str(uploaded_file.read(), "utf-8")
            json_data = json.loads(data)
            is_valid, message = validate_json(json_data)
            if is_valid:
                st.success(message)
            else:
                st.error(message)
                submission_errors += 1

    with st.expander("Submission format"):
        st.markdown(
            """
        Please follow this JSON format for your `submission.json` file:

        ```json
        {
        "submission_name": "An identifying name of your system",
        "param_count": 123, # The number of parameters your system has.
        "description": "An optional brief description of the system that will be shown on the results page",
        "tasks":
            {
            "dataset_identifier": {
                "values": ["output1", "output2", "..."], # A list of system outputs.
                # Optionally, you can add the keys which are part of an example to ensure that there is no shuffling mistakes.
                "keys": ["key-0", "key-1", ...]
                }
            }
        }
        ```
        In this case, `dataset_identifier` is the identifier of the dataset
        followed by an identifier of the set the outputs were created from, for
        example `_validation` or `_test`. For example, the `mlsum_de` test set
        would have the identifier `mlsum_de_test`. The `keys` field can be set
        to avoid accidental shuffling to impact your metrics. Simply add a list
        of the `gem_id` for each output example in the same order as your
        values. Please see the sample submission below:
        """
        )
        with open("sample-submission.json", "r") as f:
            example_submission = json.load(f)
            st.json(example_submission)

    token = st.text_input(
        "Enter πŸ€— Hub access token",
        type="password",
        help="You can generate an access token via your πŸ€— Hub settings. See the [docs](https://huggingface.co/docs/hub/security#user-access-tokens) for more details",
    )
    if token:
        try:
            user_info = HfApi().whoami(token)
        except Exception as e:
            st.error("β›” Invalid access token")
            submission_errors += 1

    submit_button = st.form_submit_button("Make Submission")

if submit_button and submission_errors == 0:
    st.write("⏳ Preparing submission for evaluation ...")
    user_name = user_info["name"]
    submission_name = json_data["submission_name"]

    # Create submission dataset under benchmarks ORG
    dataset_repo_url = f"https://huggingface.co/datasets/benchmarks/gem-{user_name}"
    repo = Repository(
        local_dir=LOCAL_REPO,
        clone_from=dataset_repo_url,
        repo_type="dataset",
        private=True,
        use_auth_token=HF_TOKEN,
    )
    submission_metadata = {"benchmark": "gem", "type": "prediction", "submission_name": submission_name}
    repo.repocard_metadata_save(submission_metadata)

    with open(f"{LOCAL_REPO}/submission.json", "w", encoding="utf-8") as f:
        json.dump(json_data, f)

    # TODO: add informative commit msg
    commit_url = repo.push_to_hub()
    if commit_url is not None:
        commit_sha = commit_url.split("/")[-1]
    else:
        commit_sha = repo.git_head_commit_url().split("/")[-1]

    submission_time = str(int(datetime.now().timestamp()))
    submission_id = submission_name + "__" + commit_sha + "__" + submission_time

    payload = {
        "username": AUTONLP_USERNAME,
        "dataset": "GEM/references",
        "task": 1,
        "model": "gem",
        "submission_dataset": f"benchmarks/gem-{user_name}",
        "submission_id": submission_id,
        "col_mapping": {},
        "split": "test",
        "config": None,
    }
    json_resp = http_post(
        path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=HF_AUTONLP_BACKEND_API
    ).json()

    if json_resp["status"] == 1:
        st.success(f"βœ… Submission {submission_name} was successfully submitted to the evaluation queue!")
    else:
        st.error("πŸ™ˆ Oh noes! There was an error submitting your submission. Please contact the organisers")

    # Flush local repo
    shutil.rmtree(LOCAL_REPO, ignore_errors=True)