|
""" |
|
Page for similarities |
|
""" |
|
|
|
|
|
|
|
|
|
import streamlit as st |
|
import pandas as pd |
|
from scipy.sparse import load_npz |
|
import pickle |
|
from sentence_transformers import SentenceTransformer |
|
from modules.multimatch_result_table import show_multi_table |
|
from modules.singlematch_result_table import show_single_table |
|
from functions.filter_projects import filter_projects |
|
from functions.filter_single import filter_single |
|
from functions.calc_matches import calc_matches |
|
from functions.same_country_filter import same_country_filter |
|
from functions.single_similar import find_similar |
|
|
|
import os |
|
import gc |
|
|
|
""" |
|
def get_process_memory(): |
|
process = psutil.Process(os.getpid()) |
|
return process.memory_info().rss / (1024 * 1024) |
|
""" |
|
|
|
|
|
|
|
|
|
""" |
|
@st.cache_data |
|
def load_sim_matrix(): |
|
loaded_matrix = load_npz("src/extended_similarities.npz") |
|
dense_matrix = loaded_matrix.toarray().astype('float16') |
|
|
|
return dense_matrix |
|
""" |
|
@st.cache_data |
|
def load_sim_matrix(): |
|
loaded_matrix = load_npz("src/extended_similarities.npz") |
|
|
|
|
|
return loaded_matrix |
|
|
|
""" |
|
@st.cache_data |
|
def load_nonsameorga_sim_matrix(): |
|
loaded_matrix = load_npz("src/extended_similarities_nonsimorga.npz") |
|
dense_matrix = loaded_matrix.toarray().astype('float16') |
|
|
|
return dense_matrix |
|
""" |
|
def load_nonsameorga_sim_matrix(): |
|
loaded_matrix = load_npz("src/extended_similarities_nonsimorga.npz") |
|
|
|
|
|
return loaded_matrix |
|
|
|
|
|
@st.cache_data |
|
def load_projects(): |
|
orgas_df = pd.read_csv("src/projects/project_orgas.csv") |
|
region_df = pd.read_csv("src/projects/project_region.csv") |
|
sector_df = pd.read_csv("src/projects/project_sector.csv") |
|
status_df = pd.read_csv("src/projects/project_status.csv") |
|
texts_df = pd.read_csv("src/projects/project_texts.csv") |
|
|
|
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner') |
|
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner') |
|
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner') |
|
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner') |
|
|
|
iati_search_list = [f'{row.iati_id}' for row in projects_df.itertuples()] |
|
title_search_list = [f'{row.title_main} ({row.orga_abbreviation.upper()})' for row in projects_df.itertuples()] |
|
|
|
return projects_df, iati_search_list, title_search_list |
|
|
|
|
|
@st.cache_data |
|
def getCRS3(): |
|
|
|
crs3_df = pd.read_csv('src/codelists/crs3_codes.csv') |
|
CRS3_CODES = crs3_df['code'].tolist() |
|
CRS3_NAME = crs3_df['name'].tolist() |
|
CRS3_MERGED = {f"{name} - {code}": code for name, code in zip(CRS3_NAME, CRS3_CODES)} |
|
|
|
return CRS3_MERGED |
|
|
|
|
|
@st.cache_data |
|
def getCRS5(): |
|
|
|
crs5_df = pd.read_csv('src/codelists/crs5_codes.csv') |
|
CRS5_CODES = crs5_df['code'].tolist() |
|
CRS5_NAME = crs5_df['name'].tolist() |
|
CRS5_MERGED = {code: [f"{name} - {code}"] for name, code in zip(CRS5_NAME, CRS5_CODES)} |
|
|
|
return CRS5_MERGED |
|
|
|
|
|
@st.cache_data |
|
def getSDG(): |
|
|
|
sdg_df = pd.read_csv('src/codelists/sdg_goals.csv') |
|
SDG_NAMES = sdg_df['name'].tolist() |
|
|
|
return SDG_NAMES |
|
|
|
|
|
@st.cache_data |
|
def getCountry(): |
|
|
|
country_df = pd.read_csv('src/codelists/country_codes_ISO3166-1alpha-2.csv') |
|
COUNTRY_CODES = country_df['Alpha-2 code'].tolist() |
|
COUNTRY_NAMES = country_df['Country'].tolist() |
|
|
|
COUNTRY_OPTION_LIST = [f"{COUNTRY_NAMES[i]} ({COUNTRY_CODES[i][-3:-1].upper()})"for i in range(len(COUNTRY_NAMES))] |
|
|
|
return COUNTRY_OPTION_LIST |
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
model = SentenceTransformer('all-MiniLM-L6-v2') |
|
return model |
|
|
|
|
|
@st.cache_data |
|
def load_embeddings_and_index(): |
|
|
|
with open("src/embeddings.pkl", "rb") as fIn: |
|
stored_data = pickle.load(fIn) |
|
embeddings = stored_data["embeddings"] |
|
|
|
return embeddings |
|
|
|
|
|
|
|
sim_matrix = load_sim_matrix() |
|
nonsameorgas_sim_matrix = load_nonsameorga_sim_matrix() |
|
projects_df, iati_search_list, title_search_list = load_projects() |
|
|
|
CRS3_MERGED = getCRS3() |
|
CRS5_MERGED = getCRS5() |
|
SDG_NAMES = getSDG() |
|
|
|
COUNTRY_OPTION_LIST = getCountry() |
|
|
|
|
|
model = load_model() |
|
embeddings = load_embeddings_and_index() |
|
|
|
def show_multi_matching_page(): |
|
|
|
|
|
with st.expander("Explanation"): |
|
st.caption(""" |
|
The Multi-Project Matching Feature uncovers synergy opportunities among various development banks and organizations by facilitating the search for |
|
similar projects within a selected filter setting. This innovative tool leverages an AI-driven similarity score to compare all available projects |
|
against those meeting the filter criteria, identifying potential matches that may not directly qualify under the selected filter settings. |
|
It integrates projects listed in the IATI database from leading organizations, including BMZ, KfW, GIZ, IAD, ADB, AfDB, EIB, WB, WBTF, and the German |
|
Federal Foreign Office (AA), offering a comprehensive platform for enhancing collaboration and maximizing the impact of development efforts. |
|
""") |
|
|
|
|
|
col1, col2, col3 = st.columns([10, 1, 10]) |
|
with col1: |
|
st.subheader("Sector Filters (required)") |
|
st.caption(""" |
|
Sector filters must be applied to see results. The CRS5 and CRS3 classifications organise development aid into categories, |
|
with the 5-digit level providing more specific detail within the broader 3-digit categories. |
|
The SDGs are 17 UN goals that aim to achieve global sustainability, peace and prosperity by 2030. Futhermore you can Search for projects with the query field. |
|
""") |
|
with col3: |
|
st.subheader("Additional Filters") |
|
st.caption(""" |
|
The additional filters allow for a more detailed search for the Multi-Project Matching. |
|
""") |
|
|
|
st.session_state.crs5_option_disabled = True |
|
col1, col2, col3 = st.columns([10, 1, 10]) |
|
with col1: |
|
|
|
crs3_option = st.multiselect( |
|
'CRS 3', |
|
CRS3_MERGED, |
|
placeholder="Select a CRS 3 code" |
|
) |
|
|
|
|
|
|
|
if crs3_option != []: |
|
st.session_state.crs5_option_disabled = False |
|
|
|
|
|
crs5_list = [txt[0].replace('"', "") for crs3_item in crs3_option for code, txt in CRS5_MERGED.items() if str(code)[:3] == str(crs3_item)[-3:]] |
|
|
|
|
|
crs5_option = st.multiselect( |
|
'CRS 5', |
|
crs5_list, |
|
placeholder="Select a CRS 5 code", |
|
disabled=st.session_state.crs5_option_disabled |
|
) |
|
|
|
|
|
sdg_option = st.selectbox( |
|
label = 'Sustainable Development Goal (SDG)', |
|
index = None, |
|
placeholder = "Select a SDG", |
|
options = SDG_NAMES[:-1], |
|
) |
|
|
|
|
|
query = st.text_input("Search Query") |
|
|
|
with col3: |
|
|
|
country_option = st.multiselect( |
|
'Country / Countries', |
|
COUNTRY_OPTION_LIST, |
|
placeholder="All countries selected" |
|
) |
|
|
|
|
|
orga_abbreviation = projects_df["orga_abbreviation"].unique() |
|
orga_full_names = projects_df["orga_full_name"].unique() |
|
orga_list = [f"{orga_full_names[i]} ({orga_abbreviation[i].upper()})"for i in range(len(orga_abbreviation))] |
|
|
|
orga_option = st.multiselect( |
|
'Development Bank / Organization', |
|
orga_list, |
|
placeholder="All organizations selected" |
|
) |
|
|
|
different_orga_checkbox = st.checkbox("Only matches between different organizations", value=True) |
|
filterd_country_only_checkbox = st.checkbox("Only matches between filtered countries", value=True) |
|
|
|
|
|
|
|
crs3_list = [i[-3:] for i in crs3_option] |
|
crs5_list = [i[-5:] for i in crs5_option] |
|
|
|
|
|
if sdg_option != None: |
|
sdg_str = sdg_option.split(".")[0] |
|
print(sdg_str) |
|
else: |
|
sdg_str = "" |
|
|
|
|
|
country_code_list = [option[-3:-1] for option in country_option] |
|
|
|
|
|
orga_code_list = [option.split("(")[1][:-1].lower() for option in orga_option] |
|
|
|
|
|
TOP_X_PROJECTS = 30 |
|
filtered_df = filter_projects(projects_df, crs3_list, crs5_list, sdg_str, country_code_list, orga_code_list, query, model, embeddings, TOP_X_PROJECTS) |
|
if isinstance(filtered_df, pd.DataFrame) and len(filtered_df) != 0: |
|
|
|
|
|
if filterd_country_only_checkbox: |
|
with st.spinner('Please wait...'): |
|
compare_df = same_country_filter(projects_df, country_code_list) |
|
else: |
|
compare_df = projects_df |
|
|
|
|
|
if different_orga_checkbox: |
|
with st.spinner('Please wait...'): |
|
p1_df, p2_df = calc_matches(filtered_df, compare_df, nonsameorgas_sim_matrix, TOP_X_PROJECTS) |
|
else: |
|
with st.spinner('Please wait...'): |
|
p1_df, p2_df = calc_matches(filtered_df, compare_df, sim_matrix, TOP_X_PROJECTS) |
|
|
|
|
|
show_multi_table(p1_df, p2_df) |
|
del p1_df, p2_df |
|
else: |
|
st.write("-----") |
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
with col2: |
|
st.write(" ") |
|
st.markdown("<span style='color: red'>There are no results for the applied filter. Try another filter!</span>", unsafe_allow_html=True) |
|
|
|
del crs3_list, crs5_list, sdg_str, filtered_df |
|
gc.collect() |
|
|
|
|
|
|
|
def show_single_matching_page(): |
|
|
|
with st.expander("Explanation"): |
|
st.caption(""" |
|
Single Project Matching empowers you to choose an individual project using either the project IATI ID or title, and then unveils the top 10 projects |
|
that bear the closest resemblance to your selected one. This selection is refined using a sophisticated AI algorithm that evaluates similarity based |
|
on several key dimensions: Sustainable Development Goals (SDG), Creditor Reporting System (CRS) codes, and textual analysis of project titles and |
|
descriptions. |
|
""") |
|
|
|
|
|
col1, col2 = st.columns([11, 20]) |
|
with col1: |
|
st.subheader("Select a reference project") |
|
st.caption(""" |
|
Select a reference project either by its title or IATI ID to find the 10 projects most similar to it. |
|
""") |
|
with col2: |
|
st.subheader("Filters for similar projects") |
|
st.caption(""" |
|
The filters are applied to find the similar projects and are independend of the selected reference project. |
|
""") |
|
|
|
col1, col2, col3, col4 = st.columns([10, 1, 10, 10]) |
|
with col1: |
|
search_option = st.selectbox( |
|
label = 'Search with project title or IATI ID', |
|
index = 0, |
|
placeholder = " ", |
|
options = ["Search with IATI ID", "Search with project title"], |
|
) |
|
|
|
if search_option == "Search with IATI ID": |
|
search_list = iati_search_list |
|
else: |
|
search_list = title_search_list |
|
|
|
project_option = st.selectbox( |
|
label = 'Search for a project', |
|
index = None, |
|
placeholder = " ", |
|
options = search_list, |
|
) |
|
|
|
with col3: |
|
|
|
orga_abbreviation = projects_df["orga_abbreviation"].unique() |
|
orga_full_names = projects_df["orga_full_name"].unique() |
|
orga_list = [f"{orga_full_names[i]} ({orga_abbreviation[i].upper()})"for i in range(len(orga_abbreviation))] |
|
|
|
orga_option_s = st.multiselect( |
|
'Development Bank / Organization ', |
|
orga_list, |
|
placeholder="All organizations selected " |
|
) |
|
|
|
different_orga_checkbox_s = st.checkbox("Only matches between different organizations ", value=True) |
|
|
|
|
|
with col4: |
|
|
|
country_option_s = st.multiselect( |
|
'Country / Countries ', |
|
COUNTRY_OPTION_LIST, |
|
placeholder="All countries selected " |
|
) |
|
|
|
st.write("--------------") |
|
|
|
|
|
if project_option: |
|
selected_project_index = search_list.index(project_option) |
|
|
|
country_code_list = [option[-3:-1] for option in country_option_s] |
|
|
|
|
|
orga_code_list = [option.split("(")[1][:-1].lower() for option in orga_option_s] |
|
|
|
TOP_X_PROJECTS = 10 |
|
with st.spinner('Please wait...'): |
|
filtered_df_s = filter_single(projects_df, country_code_list, orga_code_list) |
|
|
|
if isinstance(filtered_df_s, pd.DataFrame) and len(filtered_df_s) != 0: |
|
if different_orga_checkbox_s: |
|
with st.spinner('Please wait...'): |
|
top_projects_df = find_similar(selected_project_index, nonsameorgas_sim_matrix, filtered_df_s, 10) |
|
else: |
|
with st.spinner('Please wait...'): |
|
top_projects_df = find_similar(selected_project_index, sim_matrix, filtered_df_s, 10) |
|
|
|
show_single_table(selected_project_index, projects_df, top_projects_df) |
|
|
|
else: |
|
st.write("-----") |
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
with col2: |
|
st.write(" ") |
|
st.markdown("<span style='color: red'>Ther are no results for this filter!</span>", unsafe_allow_html=True) |
|
|
|
|