prashant
commited on
Commit
·
2caced7
1
Parent(s):
3f0df44
moving old SDGandPreProc files
Browse files- appStore/sdg_analysis.py +1 -48
- udfPreprocess/sdg_classifier.py +8 -2
- udfPreprocess/uploadAndExample.py +16 -28
- {udfPreprocess → ver0.1 scripts}/cleaning.py +0 -0
- {udfPreprocess → ver0.1 scripts}/docPreprocessing.py +0 -0
- {udfPreprocess → ver0.1 scripts}/sdg.py +0 -0
- ver0.1 scripts/sdg_analysis.py +160 -0
- ver0.1 scripts/uploadAndExample.py +52 -0
appStore/sdg_analysis.py
CHANGED
@@ -3,18 +3,13 @@ import glob, os, sys;
|
|
3 |
sys.path.append('../udfPreprocess')
|
4 |
|
5 |
#import helper
|
6 |
-
|
7 |
-
import udfPreprocess.cleaning as clean
|
8 |
|
9 |
#import needed libraries
|
10 |
import seaborn as sns
|
11 |
-
from pandas import DataFrame
|
12 |
-
from keybert import KeyBERT
|
13 |
-
from transformers import pipeline
|
14 |
import matplotlib.pyplot as plt
|
15 |
import numpy as np
|
16 |
import streamlit as st
|
17 |
-
import pandas as pd
|
18 |
import docx
|
19 |
from docx.shared import Inches
|
20 |
from docx.shared import Pt
|
@@ -29,17 +24,6 @@ logger = logging.getLogger(__name__)
|
|
29 |
|
30 |
|
31 |
|
32 |
-
# @st.cache(allow_output_mutation=True)
|
33 |
-
# def load_keyBert():
|
34 |
-
# return KeyBERT()
|
35 |
-
|
36 |
-
# @st.cache(allow_output_mutation=True)
|
37 |
-
# def load_sdgClassifier():
|
38 |
-
# classifier = pipeline("text-classification", model= "jonas/sdg_classifier_osdg")
|
39 |
-
# return classifier
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
def app():
|
44 |
|
45 |
with st.container():
|
@@ -66,19 +50,6 @@ def app():
|
|
66 |
|
67 |
df, x = sdg_classification(paraList)
|
68 |
|
69 |
-
|
70 |
-
# classifier = load_sdgClassifier()
|
71 |
-
|
72 |
-
# labels = classifier(par_list)
|
73 |
-
# labels_= [(l['label'],l['score']) for l in labels]
|
74 |
-
# df2 = DataFrame(labels_, columns=["SDG", "Relevancy"])
|
75 |
-
# df2['text'] = par_list
|
76 |
-
# df2 = df2.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
77 |
-
# df2.index += 1
|
78 |
-
# df2 =df2[df2['Relevancy']>.85]
|
79 |
-
# x = df2['SDG'].value_counts()
|
80 |
-
# df3 = df2.copy()
|
81 |
-
|
82 |
plt.rcParams['font.size'] = 25
|
83 |
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
|
84 |
# plot
|
@@ -88,26 +59,8 @@ def app():
|
|
88 |
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
|
89 |
st.markdown("#### Anything related to SDGs? ####")
|
90 |
|
91 |
-
# st.markdown("#### 🎈 Anything related to SDGs? ####")
|
92 |
-
|
93 |
c4, c5, c6 = st.columns([2, 2, 2])
|
94 |
|
95 |
-
# Add styling
|
96 |
-
cmGreen = sns.light_palette("green", as_cmap=True)
|
97 |
-
cmRed = sns.light_palette("red", as_cmap=True)
|
98 |
-
# df2 = df2.style.background_gradient(
|
99 |
-
# cmap=cmGreen,
|
100 |
-
# subset=[
|
101 |
-
# "Relevancy",
|
102 |
-
# ],
|
103 |
-
# )
|
104 |
-
|
105 |
-
# format_dictionary = {
|
106 |
-
# "Relevancy": "{:.1%}",
|
107 |
-
# }
|
108 |
-
|
109 |
-
# df2 = df2.format(format_dictionary)
|
110 |
-
|
111 |
with c5:
|
112 |
st.pyplot(fig)
|
113 |
|
|
|
3 |
sys.path.append('../udfPreprocess')
|
4 |
|
5 |
#import helper
|
6 |
+
|
|
|
7 |
|
8 |
#import needed libraries
|
9 |
import seaborn as sns
|
|
|
|
|
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
import numpy as np
|
12 |
import streamlit as st
|
|
|
13 |
import docx
|
14 |
from docx.shared import Inches
|
15 |
from docx.shared import Pt
|
|
|
24 |
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def app():
|
28 |
|
29 |
with st.container():
|
|
|
50 |
|
51 |
df, x = sdg_classification(paraList)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
plt.rcParams['font.size'] = 25
|
54 |
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
|
55 |
# plot
|
|
|
59 |
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
|
60 |
st.markdown("#### Anything related to SDGs? ####")
|
61 |
|
|
|
|
|
62 |
c4, c5, c6 = st.columns([2, 2, 2])
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with c5:
|
65 |
st.pyplot(fig)
|
66 |
|
udfPreprocess/sdg_classifier.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
from tkinter import Text
|
2 |
from haystack.nodes import TransformersDocumentClassifier
|
3 |
from haystack.schema import Document
|
4 |
from typing import List, Tuple
|
@@ -71,11 +70,18 @@ def sdg_classification(haystackdoc:List[Document])->Tuple[DataFrame,Series]:
|
|
71 |
|
72 |
return df, x
|
73 |
|
74 |
-
def runSDGPreprocessingPipeline()->List[
|
75 |
"""
|
76 |
creates the pipeline and runs the preprocessing pipeline,
|
77 |
the params for pipeline are fetched from paramconfig
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
"""
|
80 |
file_path = st.session_state['filepath']
|
81 |
file_name = st.session_state['filename']
|
|
|
|
|
1 |
from haystack.nodes import TransformersDocumentClassifier
|
2 |
from haystack.schema import Document
|
3 |
from typing import List, Tuple
|
|
|
70 |
|
71 |
return df, x
|
72 |
|
73 |
+
def runSDGPreprocessingPipeline()->List[Document]:
|
74 |
"""
|
75 |
creates the pipeline and runs the preprocessing pipeline,
|
76 |
the params for pipeline are fetched from paramconfig
|
77 |
|
78 |
+
Return
|
79 |
+
--------------
|
80 |
+
List[Document]: When preprocessing pipeline is run, the output dictionary
|
81 |
+
has four objects. For the Haysatck implementation of SDG classification we,
|
82 |
+
need to use the List of Haystack Document, which can be fetched by
|
83 |
+
key = 'documents' on output.
|
84 |
+
|
85 |
"""
|
86 |
file_path = st.session_state['filepath']
|
87 |
file_name = st.session_state['filename']
|
udfPreprocess/uploadAndExample.py
CHANGED
@@ -1,52 +1,40 @@
|
|
1 |
import streamlit as st
|
2 |
import tempfile
|
3 |
-
import udfPreprocess.docPreprocessing as pre
|
4 |
-
import udfPreprocess.cleaning as clean
|
5 |
|
6 |
def add_upload(choice):
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
if choice == 'Upload Document':
|
10 |
-
|
11 |
-
|
|
|
12 |
with tempfile.NamedTemporaryFile(mode="wb") as temp:
|
13 |
bytes_data = uploaded_file.getvalue()
|
14 |
temp.write(bytes_data)
|
15 |
st.session_state['filename'] = uploaded_file.name
|
16 |
-
# st.write("Uploaded Filename: ", uploaded_file.name)
|
17 |
file_name = uploaded_file.name
|
18 |
file_path = temp.name
|
19 |
-
# docs = pre.load_document(file_path, file_name)
|
20 |
-
# haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
|
21 |
st.session_state['filename'] = file_name
|
22 |
-
# st.session_state['paraList'] = paraList
|
23 |
st.session_state['filepath'] = file_path
|
24 |
|
25 |
|
26 |
|
27 |
else:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
file_name = file_path = 'sample/South Africa_s Low Emission Development Strategy.txt'
|
34 |
st.session_state['filename'] = file_name
|
35 |
st.sesion_state['filepath'] = file_path
|
36 |
-
|
37 |
-
# with open('sample/South Africa_s Low Emission Development Strategy.txt') as dfile:
|
38 |
-
# file = open('sample/South Africa_s Low Emission Development Strategy.txt', 'wb')
|
39 |
-
else:
|
40 |
-
# with open('sample/Ethiopia_s_2021_10 Year Development Plan.txt') as dfile:
|
41 |
file_name = file_path = 'sample/Ethiopia_s_2021_10 Year Development Plan.txt'
|
42 |
st.session_state['filename'] = file_name
|
43 |
-
st.session_state['filepath'] = file_path
|
44 |
-
# st.write("Selected document:", file_name.split('/')[1])
|
45 |
-
|
46 |
-
# if option is not None:
|
47 |
-
# docs = pre.load_document(file_path,file_name)
|
48 |
-
# haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
|
49 |
-
# st.session_state['docs'] = docs
|
50 |
-
# st.session_state['paraList'] = paraList
|
51 |
-
|
52 |
-
|
|
|
1 |
import streamlit as st
|
2 |
import tempfile
|
|
|
|
|
3 |
|
4 |
def add_upload(choice):
|
5 |
+
"""
|
6 |
+
Provdies the user with choice to either 'Upload Document' or 'Try Example'.
|
7 |
+
Based on user choice runs streamlit processes and save the path and name of
|
8 |
+
the 'file' to streamlit session_state which then can be fetched later.
|
9 |
+
|
10 |
+
"""
|
11 |
|
12 |
|
13 |
if choice == 'Upload Document':
|
14 |
+
uploaded_file = st.sidebar.file_uploader('Upload the File',
|
15 |
+
type=['pdf', 'docx', 'txt'])
|
16 |
+
if uploaded_file is not None:
|
17 |
with tempfile.NamedTemporaryFile(mode="wb") as temp:
|
18 |
bytes_data = uploaded_file.getvalue()
|
19 |
temp.write(bytes_data)
|
20 |
st.session_state['filename'] = uploaded_file.name
|
|
|
21 |
file_name = uploaded_file.name
|
22 |
file_path = temp.name
|
|
|
|
|
23 |
st.session_state['filename'] = file_name
|
|
|
24 |
st.session_state['filepath'] = file_path
|
25 |
|
26 |
|
27 |
|
28 |
else:
|
29 |
+
# listing the options
|
30 |
+
option = st.sidebar.selectbox('Select the example document',
|
31 |
+
('South Africa:Low Emission strategy',
|
32 |
+
'Ethiopia: 10 Year Development Plan'))
|
33 |
+
if option is 'South Africa:Low Emission strategy':
|
34 |
file_name = file_path = 'sample/South Africa_s Low Emission Development Strategy.txt'
|
35 |
st.session_state['filename'] = file_name
|
36 |
st.sesion_state['filepath'] = file_path
|
37 |
+
else:
|
|
|
|
|
|
|
|
|
38 |
file_name = file_path = 'sample/Ethiopia_s_2021_10 Year Development Plan.txt'
|
39 |
st.session_state['filename'] = file_name
|
40 |
+
st.session_state['filepath'] = file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{udfPreprocess → ver0.1 scripts}/cleaning.py
RENAMED
File without changes
|
{udfPreprocess → ver0.1 scripts}/docPreprocessing.py
RENAMED
File without changes
|
{udfPreprocess → ver0.1 scripts}/sdg.py
RENAMED
File without changes
|
ver0.1 scripts/sdg_analysis.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys;
|
3 |
+
sys.path.append('../udfPreprocess')
|
4 |
+
|
5 |
+
#import helper
|
6 |
+
|
7 |
+
|
8 |
+
#import needed libraries
|
9 |
+
import seaborn as sns
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import numpy as np
|
12 |
+
import streamlit as st
|
13 |
+
import docx
|
14 |
+
from docx.shared import Inches
|
15 |
+
from docx.shared import Pt
|
16 |
+
from docx.enum.style import WD_STYLE_TYPE
|
17 |
+
from udfPreprocess.sdg_classifier import sdg_classification
|
18 |
+
from udfPreprocess.sdg_classifier import runSDGPreprocessingPipeline
|
19 |
+
import configparser
|
20 |
+
import tempfile
|
21 |
+
import sqlite3
|
22 |
+
import logging
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
def app():
|
28 |
+
|
29 |
+
with st.container():
|
30 |
+
st.markdown("<h1 style='text-align: center; color: black;'> SDSN x GIZ Policy Action Tracking v0.1</h1>", unsafe_allow_html=True)
|
31 |
+
st.write(' ')
|
32 |
+
st.write(' ')
|
33 |
+
|
34 |
+
with st.expander("ℹ️ - About this app", expanded=False):
|
35 |
+
|
36 |
+
st.write(
|
37 |
+
"""
|
38 |
+
The *Analyse Policy Document* app is an easy-to-use interface built in Streamlit for analyzing policy documents with respect to SDG Classification for the paragraphs/texts in the document - developed by GIZ Data and the Sustainable Development Solution Network. \n
|
39 |
+
""")
|
40 |
+
st.markdown("")
|
41 |
+
|
42 |
+
|
43 |
+
with st.container():
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
if 'filepath' in st.session_state:
|
48 |
+
paraList = runSDGPreprocessingPipeline()
|
49 |
+
with st.spinner("Running SDG"):
|
50 |
+
|
51 |
+
df, x = sdg_classification(paraList)
|
52 |
+
|
53 |
+
|
54 |
+
# classifier = load_sdgClassifier()
|
55 |
+
|
56 |
+
# labels = classifier(par_list)
|
57 |
+
# labels_= [(l['label'],l['score']) for l in labels]
|
58 |
+
# df2 = DataFrame(labels_, columns=["SDG", "Relevancy"])
|
59 |
+
# df2['text'] = par_list
|
60 |
+
# df2 = df2.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
61 |
+
# df2.index += 1
|
62 |
+
# df2 =df2[df2['Relevancy']>.85]
|
63 |
+
# x = df2['SDG'].value_counts()
|
64 |
+
# df3 = df2.copy()
|
65 |
+
|
66 |
+
plt.rcParams['font.size'] = 25
|
67 |
+
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
|
68 |
+
# plot
|
69 |
+
fig, ax = plt.subplots()
|
70 |
+
ax.pie(x, colors=colors, radius=2, center=(4, 4),
|
71 |
+
wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))
|
72 |
+
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
|
73 |
+
st.markdown("#### Anything related to SDGs? ####")
|
74 |
+
|
75 |
+
# st.markdown("#### 🎈 Anything related to SDGs? ####")
|
76 |
+
|
77 |
+
c4, c5, c6 = st.columns([2, 2, 2])
|
78 |
+
|
79 |
+
# Add styling
|
80 |
+
cmGreen = sns.light_palette("green", as_cmap=True)
|
81 |
+
cmRed = sns.light_palette("red", as_cmap=True)
|
82 |
+
# df2 = df2.style.background_gradient(
|
83 |
+
# cmap=cmGreen,
|
84 |
+
# subset=[
|
85 |
+
# "Relevancy",
|
86 |
+
# ],
|
87 |
+
# )
|
88 |
+
|
89 |
+
# format_dictionary = {
|
90 |
+
# "Relevancy": "{:.1%}",
|
91 |
+
# }
|
92 |
+
|
93 |
+
# df2 = df2.format(format_dictionary)
|
94 |
+
|
95 |
+
with c5:
|
96 |
+
st.pyplot(fig)
|
97 |
+
|
98 |
+
c7, c8, c9 = st.columns([1, 10, 1])
|
99 |
+
with c8:
|
100 |
+
st.table(df)
|
101 |
+
|
102 |
+
|
103 |
+
# 1. Keyword heatmap \n
|
104 |
+
# 2. SDG Classification for the paragraphs/texts in the document
|
105 |
+
#
|
106 |
+
|
107 |
+
# with st.container():
|
108 |
+
# if 'docs' in st.session_state:
|
109 |
+
# docs = st.session_state['docs']
|
110 |
+
# docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
|
111 |
+
# # paraList = st.session_state['paraList']
|
112 |
+
# logging.info("keybert")
|
113 |
+
# with st.spinner("Running Key bert"):
|
114 |
+
|
115 |
+
# kw_model = load_keyBert()
|
116 |
+
|
117 |
+
# keywords = kw_model.extract_keywords(
|
118 |
+
# all_text,
|
119 |
+
# keyphrase_ngram_range=(1, 3),
|
120 |
+
# use_mmr=True,
|
121 |
+
# stop_words="english",
|
122 |
+
# top_n=10,
|
123 |
+
# diversity=0.7,
|
124 |
+
# )
|
125 |
+
|
126 |
+
# st.markdown("## 🎈 What is my document about?")
|
127 |
+
|
128 |
+
# df = (
|
129 |
+
# DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
|
130 |
+
# .sort_values(by="Relevancy", ascending=False)
|
131 |
+
# .reset_index(drop=True)
|
132 |
+
# )
|
133 |
+
# df1 = (
|
134 |
+
# DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
|
135 |
+
# .sort_values(by="Relevancy", ascending=False)
|
136 |
+
# .reset_index(drop=True)
|
137 |
+
# )
|
138 |
+
# df.index += 1
|
139 |
+
|
140 |
+
# # Add styling
|
141 |
+
# cmGreen = sns.light_palette("green", as_cmap=True)
|
142 |
+
# cmRed = sns.light_palette("red", as_cmap=True)
|
143 |
+
# df = df.style.background_gradient(
|
144 |
+
# cmap=cmGreen,
|
145 |
+
# subset=[
|
146 |
+
# "Relevancy",
|
147 |
+
# ],
|
148 |
+
# )
|
149 |
+
|
150 |
+
# c1, c2, c3 = st.columns([1, 3, 1])
|
151 |
+
|
152 |
+
# format_dictionary = {
|
153 |
+
# "Relevancy": "{:.1%}",
|
154 |
+
# }
|
155 |
+
|
156 |
+
# df = df.format(format_dictionary)
|
157 |
+
|
158 |
+
# with c2:
|
159 |
+
#
|
160 |
+
# st.table(df)
|
ver0.1 scripts/uploadAndExample.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
import udfPreprocess.docPreprocessing as pre
|
4 |
+
import udfPreprocess.cleaning as clean
|
5 |
+
|
6 |
+
def add_upload(choice):
|
7 |
+
|
8 |
+
|
9 |
+
if choice == 'Upload Document':
|
10 |
+
uploaded_file = st.sidebar.file_uploader('Upload the File', type=['pdf', 'docx', 'txt'])
|
11 |
+
if uploaded_file is not None:
|
12 |
+
with tempfile.NamedTemporaryFile(mode="wb") as temp:
|
13 |
+
bytes_data = uploaded_file.getvalue()
|
14 |
+
temp.write(bytes_data)
|
15 |
+
st.session_state['filename'] = uploaded_file.name
|
16 |
+
# st.write("Uploaded Filename: ", uploaded_file.name)
|
17 |
+
file_name = uploaded_file.name
|
18 |
+
file_path = temp.name
|
19 |
+
# docs = pre.load_document(file_path, file_name)
|
20 |
+
# haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
|
21 |
+
st.session_state['filename'] = file_name
|
22 |
+
# st.session_state['paraList'] = paraList
|
23 |
+
st.session_state['filepath'] = file_path
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
else:
|
28 |
+
# listing the options
|
29 |
+
option = st.sidebar.selectbox('Select the example document',
|
30 |
+
('South Africa:Low Emission strategy',
|
31 |
+
'Ethiopia: 10 Year Development Plan'))
|
32 |
+
if option is 'South Africa:Low Emission strategy':
|
33 |
+
file_name = file_path = 'sample/South Africa_s Low Emission Development Strategy.txt'
|
34 |
+
st.session_state['filename'] = file_name
|
35 |
+
st.sesion_state['filepath'] = file_path
|
36 |
+
# st.write("Selected document:", file_name.split('/')[1])
|
37 |
+
# with open('sample/South Africa_s Low Emission Development Strategy.txt') as dfile:
|
38 |
+
# file = open('sample/South Africa_s Low Emission Development Strategy.txt', 'wb')
|
39 |
+
else:
|
40 |
+
# with open('sample/Ethiopia_s_2021_10 Year Development Plan.txt') as dfile:
|
41 |
+
file_name = file_path = 'sample/Ethiopia_s_2021_10 Year Development Plan.txt'
|
42 |
+
st.session_state['filename'] = file_name
|
43 |
+
st.session_state['filepath'] = file_path
|
44 |
+
# st.write("Selected document:", file_name.split('/')[1])
|
45 |
+
|
46 |
+
# if option is not None:
|
47 |
+
# docs = pre.load_document(file_path,file_name)
|
48 |
+
# haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
|
49 |
+
# st.session_state['docs'] = docs
|
50 |
+
# st.session_state['paraList'] = paraList
|
51 |
+
|
52 |
+
|