prashant commited on
Commit
3c905d2
·
1 Parent(s): 2370cfa

coherence to comparison

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. appStore/coherence.py +7 -8
app.py CHANGED
@@ -13,6 +13,6 @@ app = MultiApp()
13
  app.add_app("About","house", info.app)
14
  app.add_app("SDG Analysis","gear",sdg_analysis.app)
15
  app.add_app("Search","search", keyword_search.app)
16
- app.add_app("NDC Coherence","exclude", coherence.app)
17
 
18
  app.run()
 
13
  app.add_app("About","house", info.app)
14
  app.add_app("SDG Analysis","gear",sdg_analysis.app)
15
  app.add_app("Search","search", keyword_search.app)
16
+ app.add_app("NDC Comparison","exclude", coherence.app)
17
 
18
  app.run()
appStore/coherence.py CHANGED
@@ -47,7 +47,7 @@ def app():
47
  #### APP INFO #####
48
  with st.container():
49
  st.markdown("<h1 style='text-align: center; \
50
- color: black;'> Check NDC Coherence</h1>",
51
  unsafe_allow_html=True)
52
  st.write(' ')
53
  st.write(' ')
@@ -55,12 +55,11 @@ def app():
55
 
56
  st.write(
57
  """
58
- The *Check NDC Coherence* application provides easy evaluation of
59
  coherence between a given policy document and a country’s (Intended)\
60
  Nationally Determined Contribution (INDCs/NDCs) using open-source \
61
  data from the German Institute of Development and Sustainability’s \
62
- (IDOS) [NDC Explorer]
63
- (https://klimalog.idos-research.de/ndc/#NDCExplorer/worldMap?NewAndUpdatedNDC??income???catIncome).\
64
  """)
65
  st.write("")
66
  st.write(""" User can select a country context via the drop-down menu \
@@ -76,8 +75,8 @@ def app():
76
  climate change mitigation (e.g., fossil fuel production, REDD+) and \
77
  22 indicators under climate change adaptation (e.g., sea level rise,\
78
  investment needs). The assignment of the paragraph to a corresponding\
79
- indicator is based on vector similarities in which only paragraphs \
80
- with similarity above 0.55 to the indicators are considered. """)
81
 
82
  with st.sidebar:
83
 
@@ -90,7 +89,7 @@ def app():
90
  st.markdown("---")
91
 
92
  with st.container():
93
- if st.button("Check Coherence"):
94
  sent_cca = countrySpecificCCA(cca_sent,1,countryCode)
95
  sent_ccm = countrySpecificCCM(ccm_sent,1,countryCode)
96
 
@@ -133,7 +132,7 @@ def app():
133
  axis = 1)
134
 
135
  for i,key in enumerate(list(sent_dict.keys())):
136
- st.write("Relevant paragraphs for topic:{}".format(key))
137
  df = results_df[results_df['query']==sent_dict[key]].reset_index(drop=True)
138
  for j in range(3):
139
  st.write('Result {}.'.format(j+1))
 
47
  #### APP INFO #####
48
  with st.container():
49
  st.markdown("<h1 style='text-align: center; \
50
+ color: black;'> NDC Comparison</h1>",
51
  unsafe_allow_html=True)
52
  st.write(' ')
53
  st.write(' ')
 
55
 
56
  st.write(
57
  """
58
+ The *NDC Comparison* application provides easy evaluation of
59
  coherence between a given policy document and a country’s (Intended)\
60
  Nationally Determined Contribution (INDCs/NDCs) using open-source \
61
  data from the German Institute of Development and Sustainability’s \
62
+ (IDOS) [NDC Explorer](https://klimalog.idos-research.de/ndc/#NDCExplorer/worldMap?NewAndUpdatedNDC??income???catIncome).\
 
63
  """)
64
  st.write("")
65
  st.write(""" User can select a country context via the drop-down menu \
 
75
  climate change mitigation (e.g., fossil fuel production, REDD+) and \
76
  22 indicators under climate change adaptation (e.g., sea level rise,\
77
  investment needs). The assignment of the paragraph to a corresponding\
78
+ indicator is based on vector similarities in which top 3 results
79
+ if found are shown to the user. """)
80
 
81
  with st.sidebar:
82
 
 
89
  st.markdown("---")
90
 
91
  with st.container():
92
+ if st.button("Compare with NDC"):
93
  sent_cca = countrySpecificCCA(cca_sent,1,countryCode)
94
  sent_ccm = countrySpecificCCM(ccm_sent,1,countryCode)
95
 
 
132
  axis = 1)
133
 
134
  for i,key in enumerate(list(sent_dict.keys())):
135
+ st.subheader("Relevant paragraphs for topic: {}".format(key))
136
  df = results_df[results_df['query']==sent_dict[key]].reset_index(drop=True)
137
  for j in range(3):
138
  st.write('Result {}.'.format(j+1))