File size: 2,082 Bytes
ee7859a
 
2fe4ffe
9b1b004
ee7859a
 
 
9b1b004
 
ee7859a
9b1b004
ee7859a
9b1b004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f02b92
 
 
9b1b004
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import plotly.express as px
import streamlit as st
import sentence-transformer
import umap.umap_ as umap
import pandas as pd
import os

model_name = 'sentence-transformers/all-MiniLM-L6-v2'
model = SentenceTransformer(model_name)

df_osdg = pd.read_csv('https://zenodo.org/record/5550238/files/osdg-community-dataset-v21-09-30.csv',sep='\t')

_lab_dict = {0: 'no_cat',
            1:'SDG 1 - No poverty',
              2:'SDG 2 - Zero hunger',
              3:'SDG 3 - Good health and well-being',
              4:'SDG 4 - Quality education',
              5:'SDG 5 - Gender equality',
              6:'SDG 6 - Clean water and sanitation',
              7:'SDG 7 - Affordable and clean energy',
              8:'SDG 8 - Decent work and economic growth', 
             9:'SDG 9 - Industry, Innovation and Infrastructure',
              10:'SDG 10 - Reduced inequality',
             11:'SDG 11 - Sustainable cities and communities',
             12:'SDG 12 - Responsible consumption and production',
             13:'SDG 13 - Climate action',
             14:'SDG 14 - Life below water',
             15:'SDG 15 - Life on land',
             16:'SDG 16 - Peace, justice and strong institutions',
             17:'SDG 17 - Partnership for the goals',}
             
labels = [_lab_dict[lab] for lab in df_osdg['sdg'] ]
keys = list(df_osdg['keys'])
docs = list(df_osdg['text'])

docs_embeddings = model.encode(docs)

n_neighbors = 15
n_components = 3
random_state =42
umap_model = (umap.UMAP(n_neighbors=n_neighbors, 
                            n_components=n_components, 
                            metric='cosine', 
                            random_state=random_state)
                        .fit(docs_embeddings))
                        
docs_umap = umap_model.transform(docs_embeddings)


st.title("SDG Embedding Visualisation")

fig = px.scatter_3d(
    docs_umap, x=0, y=1, z=2,
    color=labels,
    opacity = .5)#,    hover_data=[keys])
fig.update_scenes(xaxis_visible=False, yaxis_visible=False,zaxis_visible=False )
fig.update_traces(marker_size=4)
st.plotly_chart(fig)