Spaces:
Running
Running
import plotly.express as px | |
import streamlit as st | |
from sentence_transformers import SentenceTransformer | |
import umap.umap_ as umap | |
import pandas as pd | |
import os | |
def app(): | |
st.title("SDG Embedding Visualisation") | |
with st.expander("βΉοΈ - About this app", expanded=True): | |
st.write( | |
""" | |
Information cartography - Get your word/phrase/sentence/paragraph embedded and visualized. | |
The (English) sentence-transformers model "all-MiniLM-L6-v2" maps sentences & paragraphs to a 384 dimensional dense vector space This is normally used for tasks like clustering or semantic search, but in this case, we use it to place your text to a 3D map. Before plotting, the dimension needs to be reduced to three so we can actually plot it, but preserve as much information as possible. For this, we use a technology called umap. | |
On this page, you find thousands of text excerpts that were labelled by the community volunteers with respect to Sustainable Development Goals, a project by OSDG.ai, embedded as described. Ready to explore. | |
""") | |
with st.spinner("π load data"): | |
df_osdg = pd.read_csv("sdg_umap.csv", sep = "|") | |
#labels = [_lab_dict[lab] for lab in df_osdg['label'] ] | |
keys = list(df_osdg['keys']) | |
#docs = list(df_osdg['text']) | |
agree = st.checkbox('add labels') | |
if agree: | |
with st.spinner("π create visualisation"): | |
fig = px.scatter_3d( | |
df_osdg, x='coord_x', y='coord_y', z='coord_z', | |
color='labels', | |
opacity = .5, hover_data=[keys]) | |
fig.update_scenes(xaxis_visible=False, yaxis_visible=False,zaxis_visible=False ) | |
fig.update_traces(marker_size=4) | |
st.plotly_chart(fig) | |
else: | |
with st.spinner("π create visualisation"): | |
fig = px.scatter_3d( | |
df_osdg, x='coord_x', y='coord_y', z='coord_z', | |
opacity = .5, hover_data=[keys]) | |
fig.update_scenes(xaxis_visible=False, yaxis_visible=False,zaxis_visible=False ) | |
fig.update_traces(marker_size=4) | |
st.plotly_chart(fig) |