Spaces:
Running
Running
import plotly.express as px | |
import streamlit as st | |
from sentence_transformers import SentenceTransformer | |
from huggingface_hub import hf_hub_url, cached_download | |
import umap.umap_ as umap | |
import pandas as pd | |
import os | |
import joblib | |
def app(): | |
with st.container(): | |
question = st.text_input("Please enter your text here and we will embed it for you.", | |
value="Woman",) | |
if st.button("Embed"): | |
with st.spinner("👑 load language model (sentence transformer)"): | |
model_name = 'sentence-transformers/all-MiniLM-L6-v2' | |
model = SentenceTransformer(model_name) | |
REPO_ID = "peter2000/umap_embed_3d_all-MiniLM-L6-v2" | |
FILENAME = "umap_embed_3d_all-MiniLM-L6-v2.sav" | |
st.write("load umap") | |
model_umap = joblib.load(cached_download(hf_hub_url(REPO_ID, FILENAME))) | |
st.write("embed umap") | |
examples_embeddings = model.encode(question) | |
st.write("umap") | |
examples_umap = umap_model.transform(examples_embeddings) | |
st.write(examples_umap.shape) |