Spaces:
Sleeping
Sleeping
Update apps/intro.py
Browse files- apps/intro.py +25 -1
apps/intro.py
CHANGED
@@ -1 +1,25 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import plotly.express as px
|
2 |
+
import streamlit as st
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import umap.umap_ as umap
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
import joblib
|
8 |
+
|
9 |
+
|
10 |
+
with st.container():
|
11 |
+
question = st.text_input("Please enter your text here and we will embed it for you.",
|
12 |
+
value="Woman",)
|
13 |
+
|
14 |
+
if st.button("Embed"):
|
15 |
+
with st.spinner("👑 load language model (sentence transformer)"):
|
16 |
+
model_name = 'sentence-transformers/all-MiniLM-L6-v2'
|
17 |
+
model = SentenceTransformer(model_name)
|
18 |
+
umap_name = "peter200/umap_embed_3d_all-MiniLM-L6-v2.sav"
|
19 |
+
umap_model = joblib.load(umap_name)
|
20 |
+
docs_umap = umap_model.transform(docs_embeddings)
|
21 |
+
|
22 |
+
examples_embeddings = model.encode(question)
|
23 |
+
examples_umap = umap_model.transform(examples_embeddings)
|
24 |
+
|
25 |
+
st.write(examples_umap.shape)
|