import plotly.express as px import streamlit as st import sentence-transformer import umap.umap_ as umap import pandas as pd import os model_name = 'sentence-transformers/all-MiniLM-L6-v2' model = SentenceTransformer(model_name) df_osdg = pd.read_csv('https://zenodo.org/record/5550238/files/osdg-community-dataset-v21-09-30.csv',sep='\t') _lab_dict = {0: 'no_cat', 1:'SDG 1 - No poverty', 2:'SDG 2 - Zero hunger', 3:'SDG 3 - Good health and well-being', 4:'SDG 4 - Quality education', 5:'SDG 5 - Gender equality', 6:'SDG 6 - Clean water and sanitation', 7:'SDG 7 - Affordable and clean energy', 8:'SDG 8 - Decent work and economic growth', 9:'SDG 9 - Industry, Innovation and Infrastructure', 10:'SDG 10 - Reduced inequality', 11:'SDG 11 - Sustainable cities and communities', 12:'SDG 12 - Responsible consumption and production', 13:'SDG 13 - Climate action', 14:'SDG 14 - Life below water', 15:'SDG 15 - Life on land', 16:'SDG 16 - Peace, justice and strong institutions', 17:'SDG 17 - Partnership for the goals',} labels = [_lab_dict[lab] for lab in df_osdg['sdg'] ] keys = list(df_osdg['keys']) docs = list(df_osdg['text']) docs_embeddings = model.encode(docs) n_neighbors = 15 n_components = 3 random_state =42 umap_model = (umap.UMAP(n_neighbors=n_neighbors, n_components=n_components, metric='cosine', random_state=random_state) .fit(docs_embeddings)) docs_umap = umap_model.transform(docs_embeddings) st.title("SDG Embedding Visualisation") fig = px.scatter_3d( docs_umap, x=0, y=1, z=2, color=labels, opacity = .5)#, hover_data=[keys]) fig.update_scenes(xaxis_visible=False, yaxis_visible=False,zaxis_visible=False ) fig.update_traces(marker_size=4) st.plotly_chart(fig)