import plotly.express as px import streamlit as st from sentence_transformers import SentenceTransformer import umap.umap_ as umap import pandas as pd import os import joblib def app(): with st.container(): question = st.text_input("Please enter your text here and we will embed it for you.", value="Woman",) if st.button("Embed"): with st.spinner("👑 load language model (sentence transformer)"): model_name = 'sentence-transformers/all-MiniLM-L6-v2' model = SentenceTransformer(model_name) umap_name = "peter200/umap_embed_3d_all-MiniLM-L6-v2.sav" umap_model = joblib.load(umap_name) docs_umap = umap_model.transform(docs_embeddings) examples_embeddings = model.encode(question) examples_umap = umap_model.transform(examples_embeddings) st.write(examples_umap.shape)