GIanlucaRub commited on
Commit
6386ec0
1 Parent(s): e547f95

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -34
app.py CHANGED
@@ -29,63 +29,104 @@ def double_res(input_image):
29
  np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)
30
 
31
  output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32)
32
-
 
33
  for i in range(height):
34
  for j in range(width):
35
  temp_slice = expanded_input_image[i *
36
  128:(i+1)*128, j*128:(j+1)*128]/255
37
- upsampled_slice = model.predict(temp_slice[np.newaxis, ...])
38
- np.copyto(output_image[i*256:(i+1)*256, j *
39
- 256:(j+1)*256], upsampled_slice[0])
 
 
 
40
  if i != 0 and j != 0 and i != height-1 and j != width-1:
41
- # removing inner borders
42
  right_slice = expanded_input_image[i *
43
  128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
44
- right_upsampled_slice = model.predict(
45
- right_slice[np.newaxis, ...])
46
- resized_right_slice = right_upsampled_slice[0][64:192, 64:192]
47
- np.copyto(output_image[i*256+64:(i+1)*256-64,
48
- (j+1)*256-64:(j+1)*256+64], resized_right_slice)
49
 
50
  left_slice = expanded_input_image[i *
51
  128:(i+1)*128, j*128-64:(j)*128+64]/255
52
- left_upsampled_slice = model.predict(
53
- left_slice[np.newaxis, ...])
54
- resized_left_slice = left_upsampled_slice[0][64:192, 64:192]
55
- np.copyto(output_image[i*256+64:(i+1)*256-64,
56
- j*256-64:j*256+64], resized_left_slice)
57
 
58
  upper_slice = expanded_input_image[(
59
  i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
60
- upper_upsampled_slice = model.predict(
61
- upper_slice[np.newaxis, ...])
62
- resized_upper_slice = upper_upsampled_slice[0][64:192, 64:192]
63
- np.copyto(output_image[(i+1)*256-64:(i+1)*256+64,
64
- j*256+64:(j+1)*256-64], resized_upper_slice)
65
 
66
  lower_slice = expanded_input_image[i *
67
  128-64:i*128+64, j*128:(j+1)*128]/255
68
- lower_upsampled_slice = model.predict(
69
- lower_slice[np.newaxis, ...])
70
- resized_lower_slice = lower_upsampled_slice[0][64:192, 64:192]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  np.copyto(output_image[i*256-64:i*256+64,
72
  j*256+64:(j+1)*256-64], resized_lower_slice)
73
 
74
 
75
- # removing angles
76
- lower_right_slice = expanded_input_image[i *
77
- 128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
78
- lower_right_upsampled_slice = model.predict(
79
- lower_right_slice[np.newaxis, ...])
80
- resized_lower_right_slice = lower_right_upsampled_slice[0][64:192, 64:192]
81
  np.copyto(output_image[i*256-64:i*256+64, (j+1)
82
  * 256-64:(j+1)*256+64], resized_lower_right_slice)
83
 
84
- lower_left_slice = expanded_input_image[i *
85
- 128-64:i*128+64, j*128-64:j*128+64]/255
86
- lower_left_upsampled_slice = model.predict(
87
- lower_left_slice[np.newaxis, ...])
88
- resized_lower_left_slice = lower_left_upsampled_slice[0][64:192, 64:192]
89
  np.copyto(
90
  output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice)
91
 
 
29
  np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)
30
 
31
  output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32)
32
+
33
+ to_predict = []
34
  for i in range(height):
35
  for j in range(width):
36
  temp_slice = expanded_input_image[i *
37
  128:(i+1)*128, j*128:(j+1)*128]/255
38
+ to_predict.append(temp_slice)
39
+
40
+ # removing inner borders
41
+
42
+ for i in range(height):
43
+ for j in range(width):
44
  if i != 0 and j != 0 and i != height-1 and j != width-1:
 
45
  right_slice = expanded_input_image[i *
46
  128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
47
+ to_predict.append(right_slice)
48
+
 
 
 
49
 
50
  left_slice = expanded_input_image[i *
51
  128:(i+1)*128, j*128-64:(j)*128+64]/255
52
+ to_predict.append(left_slice)
53
+
 
 
 
54
 
55
  upper_slice = expanded_input_image[(
56
  i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
57
+ to_predict.append(upper_slice)
58
+
 
 
 
59
 
60
  lower_slice = expanded_input_image[i *
61
  128-64:i*128+64, j*128:(j+1)*128]/255
62
+ to_predict.append(lower_slice)
63
+ # removing angles
64
+
65
+ lower_right_slice = expanded_input_image[i *
66
+ 128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
67
+ to_predict.append(lower_right_slice)
68
+
69
+ lower_left_slice = expanded_input_image[i *
70
+ 128-64:i*128+64, j*128-64:j*128+64]/255
71
+ to_predict.append(lower_left_slice)
72
+
73
+ # predicting all images at once
74
+ predicted = model.predict(np.array(to_predict))
75
+ counter = 0
76
+ for i in range(height):
77
+ for j in range(width):
78
+ np.copyto(output_image[i*256:(i+1)*256, j *
79
+ 256:(j+1)*256], predicted[counter])
80
+ counter+=1
81
+
82
+
83
+
84
+ for i in range(height):
85
+ for j in range(width):
86
+ if i != 0 and j != 0 and i != height-1 and j != width-1:
87
+ right_upsampled_slice = predicted[counter]
88
+ counter+=1
89
+ resized_right_slice = right_upsampled_slice[64:192, 64:192]
90
+ np.copyto(output_image[i*256+64:(i+1)*256-64,
91
+ (j+1)*256-64:(j+1)*256+64], resized_right_slice)
92
+
93
+
94
+
95
+
96
+ left_upsampled_slice = predicted[counter]
97
+ counter+=1
98
+ resized_left_slice = left_upsampled_slice[64:192, 64:192]
99
+ np.copyto(output_image[i*256+64:(i+1)*256-64,
100
+ j*256-64:j*256+64], resized_left_slice)
101
+
102
+
103
+
104
+ upper_upsampled_slice = predicted[counter]
105
+ counter+=1
106
+ resized_upper_slice = upper_upsampled_slice[64:192, 64:192]
107
+ np.copyto(output_image[(i+1)*256-64:(i+1)*256+64,
108
+ j*256+64:(j+1)*256-64], resized_upper_slice)
109
+
110
+
111
+
112
+ lower_upsampled_slice = predicted[counter]
113
+ counter+=1
114
+ resized_lower_slice = lower_upsampled_slice[64:192, 64:192]
115
  np.copyto(output_image[i*256-64:i*256+64,
116
  j*256+64:(j+1)*256-64], resized_lower_slice)
117
 
118
 
119
+
120
+ lower_right_upsampled_slice = predicted[counter]
121
+ counter+=1
122
+ resized_lower_right_slice = lower_right_upsampled_slice[64:192, 64:192]
 
 
123
  np.copyto(output_image[i*256-64:i*256+64, (j+1)
124
  * 256-64:(j+1)*256+64], resized_lower_right_slice)
125
 
126
+
127
+ lower_left_upsampled_slice = predicted[counter]
128
+ counter+=1
129
+ resized_lower_left_slice = lower_left_upsampled_slice[64:192, 64:192]
 
130
  np.copyto(
131
  output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice)
132