|
import os |
|
os.environ["OPENMIND_HUB_ENDPOINT"]="https://telecom.openmind.cn" |
|
import gradio as gr |
|
import torch |
|
from openmind import AutoModelForCausalLM, AutoTokenizer |
|
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer |
|
from threading import Thread |
|
from huaweicloudsdkcore.auth.credentials import BasicCredentials |
|
from huaweicloudsdkmoderation.v2.region.moderation_region import ModerationRegion |
|
from huaweicloudsdkcore.exceptions import exceptions |
|
from huaweicloudsdkmoderation.v2 import * |
|
|
|
|
|
ak = __import__('os').getenv("CLOUD_SDK_AK") |
|
sk = __import__('os').getenv("CLOUD_SDK_SK") |
|
|
|
|
|
def text_moderate(unfiltered_text: str, rigion: str): |
|
"""Content Moderation api of HuaweiCloud. |
|
:param unfiltered_text: The text to be moderated. |
|
:param rigion: The region that provides content moderation APIs. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
credentials = BasicCredentials(ak, sk) \ |
|
|
|
client = ModerationClient.new_builder() \ |
|
.with_credentials(credentials) \ |
|
.with_region(ModerationRegion.value_of(rigion)) \ |
|
.build() |
|
|
|
try: |
|
request = RunTextModerationRequest() |
|
listItemsbody = [ |
|
TextDetectionItemsReq( |
|
text=unfiltered_text |
|
) |
|
] |
|
request.body = TextDetectionReq( |
|
items=listItemsbody |
|
) |
|
response = client.run_text_moderation(request) |
|
return response |
|
except exceptions.ClientRequestException as e: |
|
print(e.status_code) |
|
print(e.request_id) |
|
print(e.error_code) |
|
print(e.error_msg) |
|
raise e("Please make sure that you have subscribe to the content moderation service\ |
|
and export the correct access key and secret key as environment variables.") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openmind/qwen1.5_7b_chat_pt") |
|
model = AutoModelForCausalLM.from_pretrained("openmind/qwen1.5_7b_chat_pt", torch_dtype=torch.bfloat16) |
|
model.to("npu:0") |
|
|
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
stop_ids = [2] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
|
|
|
|
def predict(message, history): |
|
stop = StopOnTokens() |
|
conversation = [] |
|
|
|
for user, assistant in history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
|
|
conversation.append({"role": "user", "content": message}) |
|
print(f'>>>conversation={conversation}', flush=True) |
|
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) |
|
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
streamer = TextIteratorStreamer(tokenizer, timeout=100., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=50, |
|
temperature=0.7, |
|
repetition_penalty=1.0, |
|
num_beams=1, |
|
stopping_criteria=StoppingCriteriaList([stop]) |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
partial_message = "" |
|
for new_token in streamer: |
|
partial_message += new_token |
|
if '</s>' in partial_message: |
|
break |
|
if all([ak, sk]): |
|
res = text_moderate(partial_message, "cn-north-4") |
|
if res.result.suggestion != "pass": |
|
partial_message = "抱歉,这个问题我无法回答!" |
|
return partial_message |
|
|
|
|
|
|
|
gr.ChatInterface(predict, |
|
title="Qwen1.5 7B 对话", |
|
description="警告:所有答案都是AI生成的,可能包含不准确的信息。", |
|
examples=['杭州有哪些著名的旅游景点?', '海钓有哪些要领?'] |
|
).launch() |
|
|
|
|