GMARTINEZMILLA commited on
Commit
f637681
·
1 Parent(s): 6012e5e

feat: generated files

Browse files
Files changed (3) hide show
  1. app.py +26 -22
  2. df_clean.csv +0 -0
  3. info.csv +0 -0
app.py CHANGED
@@ -7,8 +7,10 @@ import plotly.graph_objects as go
7
  st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
8
 
9
  # Cargar el archivo CSV que ya está disponible en la web
10
- # Asegúrate de que el archivo esté en el mismo directorio o en una ubicación accesible
11
- df = pd.read_csv("info.csv") # Actualiza "ruta_del_archivo.csv" con la ruta correcta
 
 
12
 
13
  # Diseño de la página principal
14
  st.title("Welcome to Customer Insights App")
@@ -37,19 +39,19 @@ elif page == "Customer Analysis":
37
 
38
  if customer_code:
39
  # Filtrar datos para el cliente seleccionado
40
- customer_data = df[df["CLIENTE"] == customer_code]
41
 
42
  if not customer_data.empty:
43
  st.write(f"### Analysis for Customer {customer_code}")
44
-
45
- # Generar un gráfico spider (radar chart)
46
- categories = ['Variable1', 'Variable2', 'Variable3', 'Variable4'] # Aquí puedes incluir tus variables específicas
47
- customer_values = [customer_data[category].values[0] for category in categories]
48
-
49
  fig_spider = go.Figure()
50
  fig_spider.add_trace(go.Scatterpolar(
51
- r=customer_values,
52
- theta=categories,
53
  fill='toself',
54
  name=f'Customer {customer_code}'
55
  ))
@@ -57,22 +59,24 @@ elif page == "Customer Analysis":
57
  polar=dict(
58
  radialaxis=dict(
59
  visible=True,
60
- range=[0, max(customer_values) + 1]
61
  )),
62
  showlegend=False,
63
- title=f'Spider Chart for Customer {customer_code}'
64
  )
65
  st.plotly_chart(fig_spider)
66
 
67
- # Ventas del cliente 2021-2024
68
- years = ['2021', '2022', '2023', '2024']
69
- sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024'] # Nombres de las columnas para ventas por año
70
- customer_sales = [customer_data[col].values[0] for col in sales_columns]
71
-
72
- fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
73
- fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
74
- st.plotly_chart(fig_sales)
75
 
 
 
 
 
 
76
  else:
77
  st.warning(f"No data found for customer {customer_code}. Please check the code.")
78
 
@@ -87,8 +91,8 @@ elif page == "Customer Recommendations":
87
  customer_code = st.text_input("Enter Customer Code for Recommendations")
88
 
89
  if customer_code:
90
- customer_data = df[df["CLIENTE"] == customer_code]
91
-
92
  if not customer_data.empty:
93
  # Mostrar historial de compras del cliente seleccionado
94
  st.write(f"### Purchase History for Customer {customer_code}")
 
7
  st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
8
 
9
  # Cargar el archivo CSV que ya está disponible en la web
10
+ df = pd.read_csv("df_clean.csv") # Asegúrate de que la ruta del archivo es correcta
11
+
12
+ # Ignorar las dos últimas columnas
13
+ df = df.iloc[:, :-2]
14
 
15
  # Diseño de la página principal
16
  st.title("Welcome to Customer Insights App")
 
39
 
40
  if customer_code:
41
  # Filtrar datos para el cliente seleccionado
42
+ customer_data = df[df.iloc[:, 0] == customer_code] # Buscar cliente en la primera columna
43
 
44
  if not customer_data.empty:
45
  st.write(f"### Analysis for Customer {customer_code}")
46
+
47
+ # Obtener las 15 columnas con los valores más altos (ignorar la columna de cliente)
48
+ top_15_manufacturers = customer_data.iloc[:, 1:].T.nlargest(15, customer_data.index[0])
49
+
50
+ # Generar el spider chart con los top 15 fabricantes
51
  fig_spider = go.Figure()
52
  fig_spider.add_trace(go.Scatterpolar(
53
+ r=top_15_manufacturers[customer_data.index[0]].values,
54
+ theta=top_15_manufacturers.index,
55
  fill='toself',
56
  name=f'Customer {customer_code}'
57
  ))
 
59
  polar=dict(
60
  radialaxis=dict(
61
  visible=True,
62
+ range=[0, top_15_manufacturers[customer_data.index[0]].max() + 1]
63
  )),
64
  showlegend=False,
65
+ title=f'Spider Chart for Top 15 Manufacturers of Customer {customer_code}'
66
  )
67
  st.plotly_chart(fig_spider)
68
 
69
+ # Ventas del cliente 2021-2024 (si los datos existen)
70
+ if 'VENTA_2021' in df.columns and 'VENTA_2022' in df.columns and 'VENTA_2023' in df.columns and 'VENTA_2024' in df.columns:
71
+ years = ['2021', '2022', '2023', '2024']
72
+ sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024']
73
+ customer_sales = customer_data[sales_columns].values[0]
 
 
 
74
 
75
+ fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
76
+ fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
77
+ st.plotly_chart(fig_sales)
78
+ else:
79
+ st.warning("Sales data for 2021-2024 not available.")
80
  else:
81
  st.warning(f"No data found for customer {customer_code}. Please check the code.")
82
 
 
91
  customer_code = st.text_input("Enter Customer Code for Recommendations")
92
 
93
  if customer_code:
94
+ customer_data = df[df.iloc[:, 0] == customer_code]
95
+
96
  if not customer_data.empty:
97
  # Mostrar historial de compras del cliente seleccionado
98
  st.write(f"### Purchase History for Customer {customer_code}")
df_clean.csv ADDED
The diff for this file is too large to render. See raw diff
 
info.csv DELETED
File without changes