GMARTINEZMILLA commited on
Commit
ff3d566
·
1 Parent(s): 44c5a0b

feat: updated website

Browse files
Files changed (1) hide show
  1. app.py +14 -18
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import streamlit as st
 
2
  import pandas as pd
3
  import plotly.express as px
4
  import matplotlib.pyplot as plt
@@ -259,34 +260,29 @@ elif page == "Customer Analysis":
259
 
260
  if st.button("Calcular"):
261
  if customer_code:
262
- # Find Customer's Cluster
263
- customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
264
-
265
- if not customer_match.empty:
266
- cluster = customer_match['cluster_id'].values[0]
267
- st.write(f"Customer {customer_code} belongs to cluster {cluster}")
268
 
 
 
 
 
 
269
  # Load the Corresponding Model
270
  model_path = f'models/modelo_cluster_{cluster}.txt'
271
  gbm = lgb.Booster(model_file=model_path)
272
- st.write(f"Loaded model for cluster {cluster}")
273
-
274
- # Inspect the model
275
- st.write("### Model Information:")
276
- st.write(f"Number of trees: {gbm.num_trees()}")
277
- st.write(f"Number of features: {gbm.num_feature()}")
278
- st.write("Feature names:")
279
- st.write(gbm.feature_name())
280
 
 
281
  # Load predict data for that cluster
282
  predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
283
 
284
  # Convert cliente_id to string
285
  predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
286
-
287
- st.write("### Predict Data DataFrame:")
288
- st.write(predict_data.head())
289
- st.write(f"Shape: {predict_data.shape}")
290
 
291
  # Filter for the specific customer
292
  customer_code_str = str(customer_code)
 
1
  import streamlit as st
2
+ import time
3
  import pandas as pd
4
  import plotly.express as px
5
  import matplotlib.pyplot as plt
 
260
 
261
  if st.button("Calcular"):
262
  if customer_code:
263
+ with st.spinner("We are identifying the customer's cluster..."):
264
+ # Find Customer's Cluster
265
+ customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
266
+
 
 
267
 
268
+ if not customer_match.empty:
269
+ cluster = customer_match['cluster_id'].values[0]
270
+ st.success(f"Customer {customer_code} belongs to cluster {cluster}")
271
+
272
+ with st.spinner(f"Loading customer model for cluster {cluster}..."):
273
  # Load the Corresponding Model
274
  model_path = f'models/modelo_cluster_{cluster}.txt'
275
  gbm = lgb.Booster(model_file=model_path)
276
+ st.success(f"Loaded model for cluster {cluster}")
 
 
 
 
 
 
 
277
 
278
+ with st.spinner("Getting the data ready..."):
279
  # Load predict data for that cluster
280
  predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
281
 
282
  # Convert cliente_id to string
283
  predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
284
+
285
+ with st.spinner("Filtering for your customer..."):
 
 
286
 
287
  # Filter for the specific customer
288
  customer_code_str = str(customer_code)