copyLeaderBoard / app.py
GOKULSINGHSHAH123's picture
Update app.py
1af2ab2 verified
raw
history blame
21.6 kB
import pandas as pd
import streamlit as st
import gspread
from google.oauth2.service_account import Credentials
import ast
import requests
from datetime import datetime
import boto3
import json
# Define the scope
start = False
starting_position = []
tradeHistory_positions = []
s3 = boto3.resource(
service_name = 's3',
region_name = 'ap-south-1',
aws_access_key_id = 'AKIA3TD2SOLYZML62HJR',
aws_secret_access_key ='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'
)
bucket_name = 'usdsmcoinmdata'
# File mapping for options
file_mapping = {
"usdm": "usdm_trade_history.csv",
"coinm": "coinm_trade_history.csv",
"copyLeaderboard": "copyLeaderboard_trade_history.csv",
"okx": "okx_history.csv"
}
# Streamlit App
st.title("Trade History Viewer")
# Dropdown to select the trade history
option = st.selectbox("Choose the trade history to display:", list(file_mapping.keys()))
# Fetch and display the corresponding trade history
if option:
file_key = file_mapping[option]
try:
# Fetch the file from S3
obj = s3.Bucket(bucket_name).Object(file_key).get()
# Read the CSV into a DataFrame
df = pd.read_csv(obj['Body'], index_col=False)
# Display the DataFrame in Streamlit
st.write(f"Displaying data for: **{option}**")
except Exception as e:
st.error(f"Error fetching the file: {str(e)}")
df2 = pd.read_csv('df.csv')
def convert_str_to_list_or_keep(value):
if isinstance(value, str):
try:
return ast.literal_eval(value)
except (SyntaxError, ValueError):
return value
else:
return value
df = df.apply(lambda col: col.map(convert_str_to_list_or_keep))
df2 = df2.apply(lambda col: col.map(convert_str_to_list_or_keep))
df['positionClosed'] = False
if option =="copyLeaderboard":
uid_input = int(st.text_input("Enter U_IDs to filter"))
else:
uid_input = str.upper(st.text_input("Enter U_IDs to filter"))
option2 = st.radio("Choose an option:", ["Show Position History", "Show Live Positions"])
if df is not None and uid_input:
if option2 == "Show Position History":
st.title("Position History Viewer")
# Display starting positions with clickable rows
st.header("Starting Positions")
filtered_df = df[df['U_IDs'] == uid_input].copy()
if not filtered_df.empty:
trade_list = filtered_df['trade_history'].iloc[0]
else:
st.write("No data found for the provided U_ID.")
unique_lists = []
def get_amounts_from_positions_and_closed_trades(data):
# Check if 'Modified' key exists and extract amounts
if 'Modified' in data:
modified_positions = data['Modified']
# modified_positions = modified_positions[0]
if isinstance(modified_positions, dict) and 'amount' in modified_positions:
amount = modified_positions.get('amount')
if isinstance(amount, (int, float)): # Check if amount is a number
amounts =amount
# Check if 'ClosedTrades' key exists and extract amounts
if 'ClosedTrades' in data:
closed_trades = data['ClosedTrades']
closed_trades =closed_trades[0]
if isinstance(closed_trades, dict) and 'amount' in closed_trades:
amount = closed_trades.get('amount')
if isinstance(amount, (int, float)): # Check if amount is a number
amounts = amount
return amounts
def get_symbols_from_positions_and_closed_trades(data):
# Check if 'Modified' key exists and extract symbols
if 'Modified' in data:
modified_positions = data['Modified']
# modified_positions =modified_positions
if isinstance(modified_positions, dict) and 'symbol' in modified_positions:
symbol = modified_positions['symbol']
# Check if 'ClosedTrades' key exists and extract symbols
if 'ClosedTrades' in data:
closed_trades = data['ClosedTrades']
closed_trades =closed_trades[0]
if isinstance(closed_trades, dict) and 'symbol' in closed_trades:
symbol = closed_trades['symbol']
return symbol
for i in range(len(trade_list)):
if trade_list[i]=="none":
continue
if not trade_list: # Check if the trade_list is empty
st.header("No data found, this may not be in the leaderboard")
if start ==False:
st.subheader(f"Data is from {datetime.now()}")
start =True
foundCLosed = False
changeInAmount = 0
if 'symbol' in trade_list[i]:
symbol = trade_list[i]['symbol']
side ="buy" if trade_list[i]['amount']>0 else "sell"
amount = trade_list[i]['amount']
symbol = trade_list[i]['symbol']
trade_list[i]['side'] =side
trade_list[i]['changeInAmount'] = changeInAmount
trade_list[i]['i'] = i
unique_lists.append({"position":trade_list[i]})
trade_list[i] = "none"
else:
if 'positions' in trade_list[i]:
reached = False
# Collect necessary data first before modifying the dictionary
for k, v in list(trade_list[i].items()): # Convert to a list to avoid modifying during iteration
for entry in v:
if 'NewPosition' in entry:
new_position = entry.get('NewPosition', {})
# Extract symbol and amount
symbol = new_position.get('symbol')
amount = new_position.get('amount')
if option != "copyLeaderBoard":
if start==False:
start_time = new_position.get('updateTime')
year = start_time[0]
month = start_time[1]
day = start_time[2]
hour =start_time[3]
minute =start_time[4]
seconds = start_time[5]
dt = datetime(year, month, day, hour, minute, seconds)
human_readable_format = dt.strftime('%B %d, %Y, %I:%M:%S %p')
st.subheader(f"Data from {human_readable_format}")
start=True
# if start==False:
#
# start =True
side = "buy" if amount > 0 else "sell"
new_position['side'] = side
new_position['changeInAmount'] = changeInAmount
new_position['i'] = i
# Update the entry with the modified 'NewPosition'
entry['NewPosition'] = new_position
# Append the updated trade_list[i] to unique_lists
unique_lists.append(trade_list[i])
reached = True
# Now safely modify the dictionary after iteration is complete
if reached:
trade_list[i] = "none"
# Now safely modify the dictionary after iteration is complete
for j in range(i+1, len(trade_list)):
if trade_list[j] == "none":
continue
if 'positions' in trade_list[j] and isinstance(trade_list[j]['positions'], list):
for position in trade_list[j]['positions']:
# Check if 'Modified' is in the position and is a dict
if 'Modified' in position and isinstance(position['Modified'], dict):
if option!="copyLeaderboard":
if start==False:
for k,v in position.items():
start_time = v['updateTime']
year = start_time[0]
month = start_time[1]
day = start_time[2]
hour =start_time[3]
minute =start_time[4]
seconds = start_time[5]
dt = datetime(year, month, day, hour, minute, seconds)
human_readable_format = dt.strftime('%d-%m-%Y %H:%M:%S')
st.subheader(f"Data from {human_readable_format}")
start=True
modified_amount = get_amounts_from_positions_and_closed_trades(position)
modified_symbol = get_symbols_from_positions_and_closed_trades(position)
if modified_amount > 0:
modified_side = "buy"
else:
modified_side = "sell"
if symbol == modified_symbol and side == modified_side:
if start ==False:
st.header(f"Data is from {datetime.now}")
start =True
position['Modified']['side'] = modified_side
position['Modified']['changeInAmount'] = amount - modified_amount if modified_amount < 0 else modified_amount - amount
position['Modified']['i'] = i
amount = modified_amount
unique_lists.append(trade_list[j])
trade_list[j] = "none"
# Check if 'ClosedTrades' is in the position and is a tuple
if 'ClosedTrades' in position and isinstance(position['ClosedTrades'], tuple):
if start ==False:
st.header(f"Data is from {datetime.now}")
start =True
foundCLosed = False
closed_trades_tuple = position['ClosedTrades']
closed_trades_dict = {
'trade_info': closed_trades_tuple[0],
'side': closed_trades_tuple[1]
}
closed_amount = get_amounts_from_positions_and_closed_trades(position)
closed_symbol = get_symbols_from_positions_and_closed_trades(position)
if closed_amount > 0:
closed_side = "buy"
else:
closed_side = "sell"
if symbol == closed_symbol and side == closed_side:
if option!= "copyLeaderboard":
if start==False:
for k,v in position.items():
start_time = v['updateTime']
start =True
closed_trades_dict['side'] = closed_side
trade_info = closed_trades_dict['trade_info']
trade_info['changeInAmount'] = amount - closed_amount if closed_amount < 0 else closed_amount - amount
amount = closed_amount
closed_trades_dict['trade_info']['i'] = i # Store index 'i' inside 'ClosedTrades'
closed_trades_dict['trade_info']['closed'] = True
# Append the updated trade_list[j] to unique_lists
unique_lists.append(trade_list[j])
trade_list[j] = "none"
foundCLosed = True
break
# Break the inner loop if a closed trade was found
if foundCLosed:
break
for k in range(len(unique_lists)):
data = unique_lists[k]
if k ==0:
if 'positions' in data:
if isinstance(data['positions'], list):
for a in data['positions']:
if 'NewPosition' in a:
position_data = a['NewPosition']
starting_position.append(position_data)
tradeHistory_positions.append(position_data)
else:
if 'position' in data:
position_data =data['position']
starting_position.append(position_data)
tradeHistory_positions.append(position_data)
if 'positions' in data:
if isinstance(data['positions'],list):
for a in data['positions']:
if 'ClosedTrades' in a:
position_data = a['ClosedTrades'][0]
tradeHistory_positions.append(position_data)
if 'positions' in data:
if isinstance(data['positions'],list):
for a in data['positions']:
if 'Modified' in a:
position_data = a['Modified']
tradeHistory_positions.append(position_data)
unique_lists =[]
elif option2 == "Show Live Positions":
filtered_df2 = df2[df2['U_IDs'] == uid_input]
if not filtered_df2.empty:
positions_list = filtered_df2['Positions'].iloc[0] # Extract the first match
# Convert the list of dictionaries to a DataFrame
if isinstance(positions_list, list) and positions_list:
positions_df = pd.DataFrame(positions_list)
st.subheader("Live Positions")
st.dataframe(positions_df)
else:
st.write("No live positions data available for the given U_ID.")
# data3 = sheet3.get_all_values()
# headers3 = data3.pop(0)
# df3 = pd.DataFrame(data3, columns=headers3)
# filtered_df3 = df3[df3['U_IDs'] == uid_input]
# st.subheader("Performace")
# st.dataframe(filtered_df3)
def show_position_history(selected_position):
st.header(f"History for {selected_position}")
# Filter trade history for the selected position
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
if position_history:
df_history = pd.DataFrame(position_history)
if option =="copyLeaderboard":
df_history['changeInAmount'] = pd.to_numeric(df_history['changeInAmount'], errors='coerce')
df_history['markPrice'] = pd.to_numeric(df_history['markPrice'], errors='coerce')
df_history['entryPrice'] = pd.to_numeric(df_history['entryPrice'], errors='coerce')
df_history['amount'] = pd.to_numeric(df_history['amount'],errors='coerce')
# Replace NaN with 0 or handle as required
df_history.fillna(0, inplace=True)
# Update the global timestamp with the last update from history
columns_to_check = [
'symbol', 'side', 'amount', 'changeInAmount', 'markPrice',
'entryPrice', 'pnl', 'roe', 'leverage', 'updateTime',
'tradeType', 'stopLossPrice', 'takeProfitPrice', 'weightedScoreRatio'
]
# Adding missing columns with None as default
for column in columns_to_check:
if column not in df_history.columns:
df_history[column] = None
# Create a transformed DataFrame for display
df_transformed = pd.DataFrame({
'Pair/Asset': df_history['symbol'],
'is long': df_history['side'],
'Current size after change': df_history['amount'],
'Change in size in Asset': df_history['changeInAmount'],
'Change in size in USDT': df_history['changeInAmount'] * -(df_history['markPrice']),
'Entry price': df_history['entryPrice'],
'Exit price': df_history['markPrice'],
'pnl in usdt': df_history['pnl'],
'pnl in %': df_history['roe'],
'Leverage': df_history['leverage'],
'updatedTime': df_history['updateTime'],
'Trade Type': df_history['tradeType'], # New field
'Stop Loss Price': df_history['stopLossPrice'], # New field
'Take Profit Price': df_history['takeProfitPrice'], # New field
'Weighted Score Ratio': df_history['weightedScoreRatio'], # New field
'Transaction Value in USDT': df_history['amount'] * df_history['markPrice'], # New calculation
'Profit/Loss Ratio': (df_history['markPrice'] - df_history['entryPrice']) / df_history['entryPrice'] # New calculation
})
if 'closed' in df_history.columns:
df_transformed['Position closed'] = df_history['closed']
st.dataframe(df_transformed)
# Add the update timestamp to the transformed DataFrame
else:
st.write("No history found for this position.")
def lastUpdated(selected_position):
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
return position_history[-1]['updateTime']
def isClosed(selected_position):
# Filter trade history for the selected position
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
# Check if there are any records for the selected position
if not position_history:
return False
# Get the most recent entry for the selected position
last_entry = position_history[-1]
# Check if the 'closed' key exists and if it indicates the position is closed
return last_entry.get('closed', False)
def main():
df_starting = pd.DataFrame(starting_position)
for index, row in df_starting.iterrows():
side = True if row['amount'] > 0 else False
is_closed = isClosed(row['i'])
# Generate a unique key for the button
button_key = f"position_{row['i']}"
# Display a button for each trade position
if option == "copyLeaderboard":
if st.button(
f"{row['symbol']} : Long: {side}, Entry Price: {row['entryPrice']}, "
f"Market Price: {row['markPrice']}, Amount: {row['amount']}, "
f"Leverage: {row['leverage']}, "
f" isClosed: {is_closed}",
key=button_key
):
show_position_history(row['i'])
else:
if st.button(
f"{row['symbol']} : Long: {side}, Entry Price: {row['entryPrice']}, "
f"Market Price: {row['markPrice']}, Amount: {row['amount']}, "
f"Leverage: {row['leverage']}, TradeTakenAt: {row['updateTime']}, "
f"lastUpdated: {lastUpdated(row['i'])}, isClosed: {is_closed}",
key=button_key
):
show_position_history(row['i'])
if __name__ == "__main__":
main()