GOKULSINGHSHAH123
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import gspread
|
4 |
+
from google.oauth2.service_account import Credentials
|
5 |
+
import ast
|
6 |
+
import requests
|
7 |
+
import pandas as pd
|
8 |
+
import boto3
|
9 |
+
from datetime import datetime
|
10 |
+
import json
|
11 |
+
# Define the scope
|
12 |
+
start = False
|
13 |
+
starting_position = []
|
14 |
+
tradeHistory_positions = []
|
15 |
+
|
16 |
+
|
17 |
+
s3 = boto3.resource(
|
18 |
+
service_name = 's3',
|
19 |
+
region_name = 'ap-south-1',
|
20 |
+
aws_access_key_id = 'AKIA3TD2SOLYZML62HJR',
|
21 |
+
aws_secret_access_key ='mfk4Z48kAAivsIiCAqklP/+7v9iY6MxKMo3Rm1zD'
|
22 |
+
)
|
23 |
+
|
24 |
+
obj = s3.Bucket('usdsmcoinmdata').Object('copyLeaderboard_trade_history.csv').get()
|
25 |
+
df = pd.read_csv(obj['Body'],index_col=False)
|
26 |
+
|
27 |
+
df2 = pd.read_csv('df.csv')
|
28 |
+
|
29 |
+
def convert_str_to_list_or_keep(value):
|
30 |
+
if isinstance(value, str):
|
31 |
+
try:
|
32 |
+
return ast.literal_eval(value)
|
33 |
+
except (SyntaxError, ValueError):
|
34 |
+
return value
|
35 |
+
else:
|
36 |
+
return value
|
37 |
+
|
38 |
+
df = df.apply(lambda col: col.map(convert_str_to_list_or_keep))
|
39 |
+
df2 = df2.apply(lambda col: col.map(convert_str_to_list_or_keep))
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
df['positionClosed'] = False
|
46 |
+
|
47 |
+
print(df)
|
48 |
+
|
49 |
+
uid_input = int(st.text_input("Enter U_IDs to filter"))
|
50 |
+
|
51 |
+
option = st.radio("Choose an option:", ["Show Position History", "Show Live Positions"])
|
52 |
+
|
53 |
+
if df is not None and uid_input:
|
54 |
+
|
55 |
+
if option == "Show Position History":
|
56 |
+
st.title("Position History Viewer")
|
57 |
+
# Display starting positions with clickable rows
|
58 |
+
st.header("Starting Positions")
|
59 |
+
|
60 |
+
filtered_df = df[df['U_IDs'] == uid_input].copy()
|
61 |
+
print("filtered df",filtered_df)
|
62 |
+
|
63 |
+
if not filtered_df.empty:
|
64 |
+
trade_list = filtered_df['trade_history'].iloc[0]
|
65 |
+
else:
|
66 |
+
st.write("No data found for the provided U_ID.")
|
67 |
+
|
68 |
+
|
69 |
+
unique_lists = []
|
70 |
+
|
71 |
+
def get_amounts_from_positions_and_closed_trades(data):
|
72 |
+
print("revheeeeeeeeeeeeeeeegfeggggggggggggg")
|
73 |
+
print('data',data)
|
74 |
+
|
75 |
+
|
76 |
+
# Check if 'Modified' key exists and extract amounts
|
77 |
+
if 'Modified' in data:
|
78 |
+
modified_positions = data['Modified']
|
79 |
+
print("reeeeeegggggggggggggg33")
|
80 |
+
print(modified_positions)
|
81 |
+
print(type(modified_positions))
|
82 |
+
# modified_positions = modified_positions[0]
|
83 |
+
if isinstance(modified_positions, dict) and 'amount' in modified_positions:
|
84 |
+
print("reafffffffff000000000")
|
85 |
+
amount = modified_positions.get('amount')
|
86 |
+
if isinstance(amount, (int, float)): # Check if amount is a number
|
87 |
+
amounts =amount
|
88 |
+
# Check if 'ClosedTrades' key exists and extract amounts
|
89 |
+
if 'ClosedTrades' in data:
|
90 |
+
closed_trades = data['ClosedTrades']
|
91 |
+
closed_trades =closed_trades[0]
|
92 |
+
if isinstance(closed_trades, dict) and 'amount' in closed_trades:
|
93 |
+
amount = closed_trades.get('amount')
|
94 |
+
if isinstance(amount, (int, float)): # Check if amount is a number
|
95 |
+
amounts = amount
|
96 |
+
|
97 |
+
return amounts
|
98 |
+
|
99 |
+
def get_symbols_from_positions_and_closed_trades(data):
|
100 |
+
|
101 |
+
|
102 |
+
# Check if 'Modified' key exists and extract symbols
|
103 |
+
if 'Modified' in data:
|
104 |
+
modified_positions = data['Modified']
|
105 |
+
# modified_positions =modified_positions
|
106 |
+
if isinstance(modified_positions, dict) and 'symbol' in modified_positions:
|
107 |
+
symbol = modified_positions['symbol']
|
108 |
+
|
109 |
+
# Check if 'ClosedTrades' key exists and extract symbols
|
110 |
+
if 'ClosedTrades' in data:
|
111 |
+
closed_trades = data['ClosedTrades']
|
112 |
+
closed_trades =closed_trades[0]
|
113 |
+
if isinstance(closed_trades, dict) and 'symbol' in closed_trades:
|
114 |
+
symbol = closed_trades['symbol']
|
115 |
+
|
116 |
+
return symbol
|
117 |
+
|
118 |
+
for i in range(len(trade_list)):
|
119 |
+
|
120 |
+
|
121 |
+
if trade_list[i]=="none":
|
122 |
+
continue
|
123 |
+
|
124 |
+
if not trade_list: # Check if the trade_list is empty
|
125 |
+
st.header("No data found, this may not be in the leaderboard")
|
126 |
+
|
127 |
+
if start ==False:
|
128 |
+
st.subheader(f"Data is from {datetime.now()}")
|
129 |
+
start =True
|
130 |
+
foundCLosed = False
|
131 |
+
changeInAmount = 0
|
132 |
+
|
133 |
+
if 'symbol' in trade_list[i]:
|
134 |
+
symbol = trade_list[i]['symbol']
|
135 |
+
side ="buy" if float(trade_list[i]['amount'])>0 else "sell"
|
136 |
+
amount = trade_list[i]['amount']
|
137 |
+
symbol = trade_list[i]['symbol']
|
138 |
+
trade_list[i]['side'] =side
|
139 |
+
trade_list[i]['changeInAmount'] = changeInAmount
|
140 |
+
trade_list[i]['i'] = i
|
141 |
+
unique_lists.append({"position":trade_list[i]})
|
142 |
+
trade_list[i] = "none"
|
143 |
+
|
144 |
+
|
145 |
+
else:
|
146 |
+
if 'positions' in trade_list[i]:
|
147 |
+
reached = False
|
148 |
+
# Collect necessary data first before modifying the dictionary
|
149 |
+
for k, v in list(trade_list[i].items()): # Convert to a list to avoid modifying during iteration
|
150 |
+
for entry in v:
|
151 |
+
if 'NewPosition' in entry:
|
152 |
+
new_position = entry.get('NewPosition', {})
|
153 |
+
# Extract symbol and amount
|
154 |
+
symbol = new_position.get('symbol')
|
155 |
+
amount = new_position.get('amount')
|
156 |
+
# if start==False:
|
157 |
+
# start_time = new_position.get('updateTime')
|
158 |
+
# year = start_time[0]
|
159 |
+
# month = start_time[1]
|
160 |
+
# day = start_time[2]
|
161 |
+
# hour =start_time[3]
|
162 |
+
# minute =start_time[4]
|
163 |
+
# seconds = start_time[5]
|
164 |
+
# dt = datetime(year, month, day, hour, minute, seconds)
|
165 |
+
# human_readable_format = dt.strftime('%B %d, %Y, %I:%M:%S %p')
|
166 |
+
# st.subheader(f"Data from {human_readable_format}")
|
167 |
+
# start=True
|
168 |
+
# if start==False:
|
169 |
+
#
|
170 |
+
# start =True
|
171 |
+
side = "buy" if amount > 0 else "sell"
|
172 |
+
new_position['side'] = side
|
173 |
+
new_position['changeInAmount'] = changeInAmount
|
174 |
+
new_position['i'] = i
|
175 |
+
# Update the entry with the modified 'NewPosition'
|
176 |
+
entry['NewPosition'] = new_position
|
177 |
+
|
178 |
+
# Append the updated trade_list[i] to unique_lists
|
179 |
+
unique_lists.append(trade_list[i])
|
180 |
+
|
181 |
+
reached = True
|
182 |
+
|
183 |
+
# Now safely modify the dictionary after iteration is complete
|
184 |
+
if reached:
|
185 |
+
trade_list[i] = "none"
|
186 |
+
|
187 |
+
# Now safely modify the dictionary after iteration is complete
|
188 |
+
|
189 |
+
|
190 |
+
for j in range(i+1, len(trade_list)):
|
191 |
+
if trade_list[j] == "none":
|
192 |
+
continue
|
193 |
+
|
194 |
+
if 'positions' in trade_list[j] and isinstance(trade_list[j]['positions'], list):
|
195 |
+
for position in trade_list[j]['positions']:
|
196 |
+
# Check if 'Modified' is in the position and is a dict
|
197 |
+
if 'Modified' in position and isinstance(position['Modified'], dict):
|
198 |
+
|
199 |
+
# if start==False:
|
200 |
+
# for k,v in position.items():
|
201 |
+
# start_time = v['updateTime']
|
202 |
+
|
203 |
+
# year = start_time[0]
|
204 |
+
# month = start_time[1]
|
205 |
+
# day = start_time[2]
|
206 |
+
# hour =start_time[3]
|
207 |
+
# minute =start_time[4]
|
208 |
+
# seconds = start_time[5]
|
209 |
+
# dt = datetime(year, month, day, hour, minute, seconds)
|
210 |
+
# human_readable_format = dt.strftime('%d-%m-%Y %H:%M:%S')
|
211 |
+
# st.subheader(f"Data from {human_readable_format}")
|
212 |
+
# start=True
|
213 |
+
modified_amount = get_amounts_from_positions_and_closed_trades(position)
|
214 |
+
modified_symbol = get_symbols_from_positions_and_closed_trades(position)
|
215 |
+
|
216 |
+
if modified_amount > 0:
|
217 |
+
modified_side = "buy"
|
218 |
+
else:
|
219 |
+
modified_side = "sell"
|
220 |
+
|
221 |
+
if symbol == modified_symbol and side == modified_side:
|
222 |
+
if start ==False:
|
223 |
+
st.header(f"Data is from {datetime.now}")
|
224 |
+
start =True
|
225 |
+
position['Modified']['side'] = modified_side
|
226 |
+
position['Modified']['changeInAmount'] = float(amount) - modified_amount if modified_amount < 0 else modified_amount - float(amount)
|
227 |
+
position['Modified']['i'] = i
|
228 |
+
amount = modified_amount
|
229 |
+
unique_lists.append(trade_list[j])
|
230 |
+
trade_list[j] = "none"
|
231 |
+
|
232 |
+
# Check if 'ClosedTrades' is in the position and is a tuple
|
233 |
+
if 'ClosedTrades' in position and isinstance(position['ClosedTrades'], tuple):
|
234 |
+
if start ==False:
|
235 |
+
st.header(f"Data is from {datetime.now}")
|
236 |
+
start =True
|
237 |
+
foundCLosed = False
|
238 |
+
closed_trades_tuple = position['ClosedTrades']
|
239 |
+
closed_trades_dict = {
|
240 |
+
'trade_info': closed_trades_tuple[0],
|
241 |
+
'side': closed_trades_tuple[1]
|
242 |
+
}
|
243 |
+
|
244 |
+
closed_amount = get_amounts_from_positions_and_closed_trades(position)
|
245 |
+
closed_symbol = get_symbols_from_positions_and_closed_trades(position)
|
246 |
+
|
247 |
+
if closed_amount > 0:
|
248 |
+
closed_side = "buy"
|
249 |
+
else:
|
250 |
+
closed_side = "sell"
|
251 |
+
|
252 |
+
if symbol == closed_symbol and side == closed_side:
|
253 |
+
# if start==False:
|
254 |
+
# for k,v in position.items():
|
255 |
+
# start_time = v['updateTime']
|
256 |
+
# start =True
|
257 |
+
|
258 |
+
closed_trades_dict['side'] = closed_side
|
259 |
+
trade_info = closed_trades_dict['trade_info']
|
260 |
+
trade_info['changeInAmount'] = float(amount) - closed_amount if closed_amount < 0 else closed_amount - float(amount)
|
261 |
+
amount = closed_amount
|
262 |
+
closed_trades_dict['trade_info']['i'] = i # Store index 'i' inside 'ClosedTrades'
|
263 |
+
closed_trades_dict['trade_info']['closed'] = True
|
264 |
+
|
265 |
+
# Append the updated trade_list[j] to unique_lists
|
266 |
+
unique_lists.append(trade_list[j])
|
267 |
+
trade_list[j] = "none"
|
268 |
+
foundCLosed = True
|
269 |
+
break
|
270 |
+
|
271 |
+
# Break the inner loop if a closed trade was found
|
272 |
+
if foundCLosed:
|
273 |
+
break
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
for k in range(len(unique_lists)):
|
279 |
+
data = unique_lists[k]
|
280 |
+
|
281 |
+
|
282 |
+
if k ==0:
|
283 |
+
|
284 |
+
|
285 |
+
if 'positions' in data:
|
286 |
+
if isinstance(data['positions'], list):
|
287 |
+
for a in data['positions']:
|
288 |
+
if 'NewPosition' in a:
|
289 |
+
|
290 |
+
position_data = a['NewPosition']
|
291 |
+
starting_position.append(position_data)
|
292 |
+
tradeHistory_positions.append(position_data)
|
293 |
+
|
294 |
+
|
295 |
+
else:
|
296 |
+
if 'position' in data:
|
297 |
+
position_data =data['position']
|
298 |
+
starting_position.append(position_data)
|
299 |
+
tradeHistory_positions.append(position_data)
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
if 'positions' in data:
|
304 |
+
if isinstance(data['positions'],list):
|
305 |
+
for a in data['positions']:
|
306 |
+
if 'ClosedTrades' in a:
|
307 |
+
position_data = a['ClosedTrades'][0]
|
308 |
+
tradeHistory_positions.append(position_data)
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
if 'positions' in data:
|
313 |
+
if isinstance(data['positions'],list):
|
314 |
+
for a in data['positions']:
|
315 |
+
if 'Modified' in a:
|
316 |
+
position_data = a['Modified']
|
317 |
+
tradeHistory_positions.append(position_data)
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
|
322 |
+
unique_lists =[]
|
323 |
+
|
324 |
+
elif option == "Show Live Positions":
|
325 |
+
filtered_df2 = df2[df2['U_IDs'] == uid_input]
|
326 |
+
|
327 |
+
if not filtered_df2.empty:
|
328 |
+
|
329 |
+
positions_list = filtered_df2['Positions'].iloc[0] # Extract the first match
|
330 |
+
|
331 |
+
# Convert the list of dictionaries to a DataFrame
|
332 |
+
if isinstance(positions_list, list) and positions_list:
|
333 |
+
positions_df = pd.DataFrame(positions_list)
|
334 |
+
st.subheader("Live Positions")
|
335 |
+
st.dataframe(positions_df)
|
336 |
+
else:
|
337 |
+
st.write("No live positions data available for the given U_ID.")
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
# data3 = sheet3.get_all_values()
|
342 |
+
# headers3 = data3.pop(0)
|
343 |
+
# df3 = pd.DataFrame(data3, columns=headers3)
|
344 |
+
# filtered_df3 = df3[df3['U_IDs'] == uid_input]
|
345 |
+
# st.subheader("Performace")
|
346 |
+
# st.dataframe(filtered_df3)
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
def show_position_history(selected_position):
|
351 |
+
st.header(f"History for {selected_position}")
|
352 |
+
|
353 |
+
# Filter trade history for the selected position
|
354 |
+
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
if position_history:
|
359 |
+
df_history = pd.DataFrame(position_history)
|
360 |
+
|
361 |
+
df_history['changeInAmount'] = pd.to_numeric(df_history['changeInAmount'], errors='coerce')
|
362 |
+
df_history['markPrice'] = pd.to_numeric(df_history['markPrice'], errors='coerce')
|
363 |
+
df_history['entryPrice'] = pd.to_numeric(df_history['entryPrice'], errors='coerce')
|
364 |
+
|
365 |
+
df_history['amount'] = pd.to_numeric(df_history['amount'],errors='coerce')
|
366 |
+
|
367 |
+
# Replace NaN with 0 or handle as required
|
368 |
+
df_history.fillna(0, inplace=True)
|
369 |
+
|
370 |
+
# Update the global timestamp with the last update from history
|
371 |
+
columns_to_check = [
|
372 |
+
'symbol', 'side', 'amount', 'changeInAmount', 'markPrice',
|
373 |
+
'entryPrice', 'pnl', 'roe', 'leverage', 'updateTime',
|
374 |
+
'tradeType', 'stopLossPrice', 'takeProfitPrice', 'weightedScoreRatio'
|
375 |
+
]
|
376 |
+
|
377 |
+
# Adding missing columns with None as default
|
378 |
+
for column in columns_to_check:
|
379 |
+
if column not in df_history.columns:
|
380 |
+
df_history[column] = None
|
381 |
+
|
382 |
+
# Create a transformed DataFrame for display
|
383 |
+
df_transformed = pd.DataFrame({
|
384 |
+
'Pair/Asset': df_history['symbol'],
|
385 |
+
'is long': df_history['side'],
|
386 |
+
'Current size after change': df_history['amount'],
|
387 |
+
'Change in size in Asset': df_history['changeInAmount'],
|
388 |
+
'Change in size in USDT': df_history['changeInAmount'] * -(df_history['markPrice']),
|
389 |
+
'Entry price': df_history['entryPrice'],
|
390 |
+
'Exit price': df_history['markPrice'],
|
391 |
+
'pnl in usdt': df_history['pnl'],
|
392 |
+
'pnl in %': df_history['roe'],
|
393 |
+
'Leverage': df_history['leverage'],
|
394 |
+
# 'updatedTime': df_history['updateTime'],
|
395 |
+
'Trade Type': df_history['tradeType'], # New field
|
396 |
+
'Stop Loss Price': df_history['stopLossPrice'], # New field
|
397 |
+
'Take Profit Price': df_history['takeProfitPrice'], # New field
|
398 |
+
'Weighted Score Ratio': df_history['weightedScoreRatio'], # New field
|
399 |
+
# 'Transaction Value in USDT': df_history['amount'] * df_history['markPrice'], # New calculation
|
400 |
+
'Profit/Loss Ratio': (df_history['markPrice'] - df_history['entryPrice']) / df_history['entryPrice'] # New calculation
|
401 |
+
})
|
402 |
+
|
403 |
+
if 'closed' in df_history.columns:
|
404 |
+
df_transformed['Position closed'] = df_history['closed']
|
405 |
+
|
406 |
+
st.dataframe(df_transformed)
|
407 |
+
|
408 |
+
# Add the update timestamp to the transformed DataFrame
|
409 |
+
|
410 |
+
else:
|
411 |
+
st.write("No history found for this position.")
|
412 |
+
|
413 |
+
def lastUpdated(selected_position):
|
414 |
+
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
|
415 |
+
return position_history[-1]['updateTime']
|
416 |
+
|
417 |
+
def isClosed(selected_position):
|
418 |
+
# Filter trade history for the selected position
|
419 |
+
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
|
420 |
+
|
421 |
+
# Check if there are any records for the selected position
|
422 |
+
if not position_history:
|
423 |
+
return False
|
424 |
+
|
425 |
+
# Get the most recent entry for the selected position
|
426 |
+
last_entry = position_history[-1]
|
427 |
+
|
428 |
+
# Check if the 'closed' key exists and if it indicates the position is closed
|
429 |
+
return last_entry.get('closed', False)
|
430 |
+
|
431 |
+
|
432 |
+
|
433 |
+
|
434 |
+
def main():
|
435 |
+
df_starting = pd.DataFrame(starting_position)
|
436 |
+
|
437 |
+
for index, row in df_starting.iterrows():
|
438 |
+
side = True if float(row['amount']) > 0 else False
|
439 |
+
is_closed = isClosed(row['i'])
|
440 |
+
|
441 |
+
# Generate a unique key for the button
|
442 |
+
button_key = f"position_{row['i']}"
|
443 |
+
|
444 |
+
# Display a button for each trade position
|
445 |
+
if st.button(
|
446 |
+
f"{row['symbol']} : Long: {side}, Entry Price: {row['entryPrice']}, "
|
447 |
+
f"Market Price: {row['markPrice']}, Amount: {row['amount']}, "
|
448 |
+
f"Leverage: {row['leverage']}, isClosed: {is_closed}",
|
449 |
+
key=button_key
|
450 |
+
):
|
451 |
+
show_position_history(row['i'])
|
452 |
+
|
453 |
+
if __name__ == "__main__":
|
454 |
+
main()
|