okx / app.py
GOKULSINGHSHAH123's picture
Update app.py
17ddad3 verified
import pandas as pd
import streamlit as st
import gspread
from google.oauth2.service_account import Credentials
import ast
import requests
from datetime import datetime
import json
# Define the scope
start = False
starting_position = []
tradeHistory_positions = []
scopes = ["https://www.googleapis.com/auth/spreadsheets"]
# Service account credentials as a dictionary
service_account_info = {
"type": "service_account",
"project_id": "primetrade-433011",
"private_key_id": "8bdab2f373343c045c8712c27e34f858132675df",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtmNCg9Jkku2+W\nRXWqnOzoLQmXrn4BJC3yk7aaSGNh254/zMrWgyejTGpWxqklv0Hnxx1qn8nb3QoP\nKmRDbJnkt4doKupXFgfxPlebelLXgRT1JDbmVCTfCp8TcG8I1/9FpFNoqvpyeMZx\nd747UfP+bqym1pdhMr6rxCUEYVcKhc/4t+04k3i0IGGWW293CXGWGD54CIeFqWQX\n+SHo20pYfh8FKamytY8LHfwk1XbX1dMjnsxsQ/xZ8IjHZ//+m3bAG7n9QPe3a724\nG3L7iTZ15VET48j55aiSi4tJvHuy/I2kzOXrm/OuHRqJ+bH5+Ze8FVbmbBQlBjn8\nI8boxVSHAgMBAAECggEAMTAHEUwtJmjLpecZf5XGVMUKHkXtYxJmyICNMWsIad5q\nGQbEhIKWFSGeUecpX04xdOSI08Dh19/qLUDkNuyLMHDGN8BNNQ7DgloZRa8j0Pc8\nwncX7SxzZBVk3IOzmmxlYsy8a4BixVOuWtFEgBdpDLM8TWupafuQZigGGxcfrBWl\njgUoga05ybjpsdxW9c9+DoXXaOPHu/QQCEbv1X3dAJHJ0My2rBaO0s+0qoDJime1\nqNms6d36TnnoD6c0qhwD/E0eZfuaijcGxarq5BBnk9qsyxud2dmZd3M8jtVV/Env\n4o1rBV9Hao/z7DKbFdqOPNSMJRtY3e+hRjgm1/feaQKBgQDhKtsMRV+Ovkvu/JdA\nHG6We0nJ/kt8czEmbbW61rvUmJbI8hAK+0TERv/mwXaQqmo6JNhCREcx17vIE7Qy\nEzThGv7hYKotrrEXZq9Dje76KmAtk2zeJPXRriRu1rixRNPRwx9F2I+B3+iXaoqx\nsenzNMSy545P0YvssJYQLnKMTwKBgQDFXi3ZxtKCUwqdOvBEsVHeE00mUbqNm+fV\nDUgxFesQ8KkwuFib29NglnbxG3hgCVpA/4BoCsM2EyuZKap3gtoMW/EZqqhb9Hu+\nfwDoiJy3DmHivq6kHeEo6V6uTDxybqgPN+Yc08X+bqflDMYXLkBuJOnE+8O38TtE\n7BROW+EOSQKBgFiXHPH6BXvLAWM4/GVcCmKohUK1C4weYlMlTSACxooBsynCm29G\npyq2aI6oxXZrpjnUL0X7SSuiHp68qeQdzGtYzLlt5+brWX/EheaFXGYO8CJeY7IP\nRqxF4M2/K5GLa++W3qIDb4sAxql0YLdDMbHfrBhbpJFg97WbUJ9zNtxfAoGAdV23\n7lUpQY6YNT+jOXYotOLNcggP473ecvdfArGCA6TZN7uoFab3X+yZ9m7bemCVZymI\n9lXQGAv2VTJNyJvrhoX2LckqLOSJ4ZIsvBrg9op68xdpSvbpuiZsw0FagMIE9mfL\nU0Er8E1lUfPyqD482kLhMN52WJ//GtE4khBZGOECgYEAwD6mhwYdgQq1rujDZF8g\nzr4Ze3hiwoKGsEvybSYjqmsJMqwLWLCe9Wsj2bPWiMJmkpYdiCC+j3Wo6A1bdWy2\nFn/2T9dO35veJwM/HjP7/jMicyVr6S86vhMfzWuqvnQtuB/HAwctH+N4lJ5z0k8w\nn6WFbBEenJv8p5vZQi0NhHg=\n-----END PRIVATE KEY-----\n",
"client_email": "myapi-994@primetrade-433011.iam.gserviceaccount.com",
"client_id": "104595139129046465243",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/myapi-994%40primetrade-433011.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
# Add your service account credentials here
}
cookie_str = "p20t=web.740861259.532251DB15AFA4E2C9D5A7A4AA7EB97E" #cookie_str get by logging into binance
csrft = "4f341a1a0b78bfb7ddb0bfc9b093ec06"
trade_type= "PERPETUAL" # perpetual or delivery
# Authenticate using the service account info
creds = Credentials.from_service_account_info(service_account_info, scopes=scopes)
client = gspread.authorize(creds)
# The ID of the Google Sheet (found in the URL of the sheet)
sheet_id = "1I_PuAeWTaRC4OhS5BA5gv0XQCA17VlIjpA1MvOlzVA8"
# Open the Google Sheet by sheet ID
workbook = client.open_by_key(sheet_id)
# Select the specific sheet in the workbook
sheet = workbook.worksheet("okxHistory")
sheet2 = workbook.worksheet("okxLeaderBoard")
sheet3 = workbook.worksheet("Performance")
# Extract the data from the Google Sheet into a pandas DataFrame
data = sheet.get_all_values()
data2 = sheet2.get_all_values()
headers = data.pop(0)
headers2 = data2.pop(0)
df = pd.DataFrame(data, columns=headers)
df2 = pd.DataFrame(data2,columns=headers2)
def combine_chunks(df):
combined_rows = []
# Group by U_IDs
grouped = df.groupby('U_IDs')
for uid, group in grouped:
# Combine chunks for each UID
trade_history_combined = ''.join(group['trade_history'].tolist())
# Create a DataFrame for the combined row
combined_row = pd.DataFrame({
'U_IDs': [uid],
'trade_history': [trade_history_combined]
})
combined_rows.append(combined_row)
# Concatenate all combined rows into a single DataFrame
combined_df = pd.concat(combined_rows, ignore_index=True)
return combined_df
df = df.fillna(value=pd.NA)
df = df.where(pd.notnull(df), None)
df2 = df2.fillna(value=pd.NA)
df2 = df2.where(pd.notnull(df2), None)
df = combine_chunks(df)
# df2 = combine_chunks(df2)
def convert_str_to_list_or_keep(value):
if isinstance(value, str):
try:
return ast.literal_eval(value)
except (SyntaxError, ValueError):
return value
else:
return value
df = df.apply(lambda col: col.map(convert_str_to_list_or_keep))
df2 = df2.apply(lambda col: col.map(convert_str_to_list_or_keep))
df['positionClosed'] = False
uid_input = st.text_input("Enter U_IDs to filter")
option = st.radio("Choose an option:", ["Show Position History", "Show Live Positions"])
if df is not None and uid_input:
if option == "Show Position History":
st.title("Position History Viewer")
# Display starting positions with clickable rows
st.header("Starting Positions")
filtered_df = df[df['U_IDs'] == uid_input].copy()
if not filtered_df.empty:
trade_list = filtered_df['trade_history'].iloc[0]
else:
st.write("No data found for the provided U_ID.")
unique_lists = []
def get_amounts_from_positions_and_closed_trades(data):
# Check if 'Modified' key exists and extract amounts
if 'Modified' in data:
modified_positions = data['Modified']
# modified_positions = modified_positions[0]
if isinstance(modified_positions, dict) and 'amount' in modified_positions:
amount = modified_positions.get('amount')
if isinstance(amount, (int, float)): # Check if amount is a number
amounts =amount
# Check if 'ClosedTrades' key exists and extract amounts
if 'ClosedTrades' in data:
closed_trades = data['ClosedTrades']
closed_trades =closed_trades[0]
if isinstance(closed_trades, dict) and 'amount' in closed_trades:
amount = closed_trades.get('amount')
if isinstance(amount, (int, float)): # Check if amount is a number
amounts = amount
return amounts
def get_symbols_from_positions_and_closed_trades(data):
# Check if 'Modified' key exists and extract symbols
if 'Modified' in data:
modified_positions = data['Modified']
# modified_positions =modified_positions
if isinstance(modified_positions, dict) and 'symbol' in modified_positions:
symbol = modified_positions['symbol']
# Check if 'ClosedTrades' key exists and extract symbols
if 'ClosedTrades' in data:
closed_trades = data['ClosedTrades']
closed_trades =closed_trades[0]
if isinstance(closed_trades, dict) and 'symbol' in closed_trades:
symbol = closed_trades['symbol']
return symbol
for i in range(len(trade_list)):
if trade_list[i]=="none":
continue
if not trade_list: # Check if the trade_list is empty
st.header("No data found, this may not be in the leaderboard")
if start ==False:
st.subheader(f"Data is from {datetime.now()}")
start =True
foundCLosed = False
changeInAmount = 0
if 'symbol' in trade_list[i]:
symbol = trade_list[i]['symbol']
side ="buy" if trade_list[i]['amount']>0 else "sell"
amount = trade_list[i]['usdAmount']
symbol = trade_list[i]['symbol']
trade_list[i]['side'] =side
trade_list[i]['changeInAmount'] = changeInAmount
trade_list[i]['i'] = i
unique_lists.append({"position":trade_list[i]})
trade_list[i] = "none"
else:
if 'positions' in trade_list[i]:
reached = False
# Collect necessary data first before modifying the dictionary
for k, v in list(trade_list[i].items()): # Convert to a list to avoid modifying during iteration
for entry in v:
if 'NewPosition' in entry:
new_position = entry.get('NewPosition', {})
# Extract symbol and amount
symbol = new_position.get('symbol')
amount = new_position.get('usdAmount')
if start==False:
start_time = new_position.get('updateTime')
year = start_time[0]
month = start_time[1]
day = start_time[2]
hour =start_time[3]
minute =start_time[4]
seconds = start_time[5]
dt = datetime(year, month, day, hour, minute, seconds)
human_readable_format = dt.strftime('%B %d, %Y, %I:%M:%S %p')
st.subheader(f"Data from {human_readable_format}")
start=True
# if start==False:
#
# start =True
side = "buy" if amount > 0 else "sell"
new_position['side'] = side
new_position['changeInAmount'] = changeInAmount
new_position['i'] = i
# Update the entry with the modified 'NewPosition'
entry['NewPosition'] = new_position
# Append the updated trade_list[i] to unique_lists
unique_lists.append(trade_list[i])
reached = True
# Now safely modify the dictionary after iteration is complete
if reached:
trade_list[i] = "none"
# Now safely modify the dictionary after iteration is complete
for j in range(i+1, len(trade_list)):
if trade_list[j] == "none":
continue
if 'positions' in trade_list[j] and isinstance(trade_list[j]['positions'], list):
for position in trade_list[j]['positions']:
# Check if 'Modified' is in the position and is a dict
if 'Modified' in position and isinstance(position['Modified'], dict):
if start==False:
for k,v in position.items():
start_time = v['updateTime']
year = start_time[0]
month = start_time[1]
day = start_time[2]
hour =start_time[3]
minute =start_time[4]
seconds = start_time[5]
dt = datetime(year, month, day, hour, minute, seconds)
human_readable_format = dt.strftime('%d-%m-%Y %H:%M:%S')
st.subheader(f"Data from {human_readable_format}")
start=True
modified_amount = get_amounts_from_positions_and_closed_trades(position)
modified_symbol = get_symbols_from_positions_and_closed_trades(position)
if modified_amount > 0:
modified_side = "buy"
else:
modified_side = "sell"
if symbol == modified_symbol and side == modified_side:
if start ==False:
st.header(f"Data is from {datetime.now}")
start =True
position['Modified']['side'] = modified_side
position['Modified']['changeInAmount'] = amount - modified_amount if modified_amount < 0 else modified_amount - amount
position['Modified']['i'] = i
amount = modified_amount
unique_lists.append(trade_list[j])
trade_list[j] = "none"
# Check if 'ClosedTrades' is in the position and is a tuple
if 'ClosedTrades' in position and isinstance(position['ClosedTrades'], tuple):
if start ==False:
st.header(f"Data is from {datetime.now}")
start =True
foundCLosed = False
closed_trades_tuple = position['ClosedTrades']
closed_trades_dict = {
'trade_info': closed_trades_tuple[0],
'side': closed_trades_tuple[1]
}
closed_amount = get_amounts_from_positions_and_closed_trades(position)
closed_symbol = get_symbols_from_positions_and_closed_trades(position)
if closed_amount > 0:
closed_side = "buy"
else:
closed_side = "sell"
if symbol == closed_symbol and side == closed_side:
if start==False:
for k,v in position.items():
start_time = v['updateTime']
start =True
closed_trades_dict['side'] = closed_side
trade_info = closed_trades_dict['trade_info']
trade_info['changeInAmount'] = amount - closed_amount if closed_amount < 0 else closed_amount - amount
amount = closed_amount
closed_trades_dict['trade_info']['i'] = i # Store index 'i' inside 'ClosedTrades'
closed_trades_dict['trade_info']['closed'] = True
# Append the updated trade_list[j] to unique_lists
unique_lists.append(trade_list[j])
trade_list[j] = "none"
foundCLosed = True
break
# Break the inner loop if a closed trade was found
if foundCLosed:
break
for k in range(len(unique_lists)):
data = unique_lists[k]
if k ==0:
if 'positions' in data:
if isinstance(data['positions'], list):
for a in data['positions']:
if 'NewPosition' in a:
position_data = a['NewPosition']
starting_position.append(position_data)
tradeHistory_positions.append(position_data)
else:
if 'position' in data:
position_data =data['position']
starting_position.append(position_data)
tradeHistory_positions.append(position_data)
if 'positions' in data:
if isinstance(data['positions'],list):
for a in data['positions']:
if 'ClosedTrades' in a:
position_data = a['ClosedTrades'][0]
tradeHistory_positions.append(position_data)
if 'positions' in data:
if isinstance(data['positions'],list):
for a in data['positions']:
if 'Modified' in a:
position_data = a['Modified']
tradeHistory_positions.append(position_data)
unique_lists =[]
elif option == "Show Live Positions":
filtered_df2 = df2[df2['U_IDs'] == uid_input]
if not filtered_df2.empty:
positions_list = filtered_df2['Positions'].iloc[0] # Extract the first match
# Convert the list of dictionaries to a DataFrame
if isinstance(positions_list, list) and positions_list:
positions_df = pd.DataFrame(positions_list)
st.subheader("Live Positions")
st.dataframe(positions_df)
else:
st.write("No live positions data available for the given U_ID.")
data3 = sheet3.get_all_values()
headers3 = data3.pop(0)
df3 = pd.DataFrame(data3, columns=headers3)
filtered_df3 = df3[df3['U_IDs'] == uid_input]
st.subheader("Performace")
st.dataframe(filtered_df3)
def show_position_history(selected_position):
st.header(f"History for {selected_position}")
# Filter trade history for the selected position
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
if position_history:
df_history = pd.DataFrame(position_history)
# Update the global timestamp with the last update from history
# Create a transformed DataFrame for display
df_transformed = pd.DataFrame({
'Pair/Asset': df_history['symbol'],
'is long': df_history['side'],
'Current size after change': df_history['usdAmount'],
'Change in size in Asset': df_history['changeInAmount'],
'Change in size in USDT': df_history['changeInAmount'] * -(df_history['markPrice']),
'Entry price': df_history['entryPrice'],
'Exit price': df_history['markPrice'],
'pnl in usdt': df_history['pnl'],
'pnl in %': df_history['roe'],
'Leverage': df_history['leverage'],
'updatedTime': df_history['updateTime']
})
if 'closed' in df_history.columns:
df_transformed['Position closed'] = df_history['closed']
st.dataframe(df_transformed)
# Add the update timestamp to the transformed DataFrame
else:
st.write("No history found for this position.")
def lastUpdated(selected_position):
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
return position_history[-1]['updateTime']
def isClosed(selected_position):
# Filter trade history for the selected position
position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
# Check if there are any records for the selected position
if not position_history:
return False
# Get the most recent entry for the selected position
last_entry = position_history[-1]
# Check if the 'closed' key exists and if it indicates the position is closed
return last_entry.get('closed', False)
def main():
df_starting = pd.DataFrame(starting_position)
for index, row in df_starting.iterrows():
side = True if row['usdAmount'] > 0 else False
is_closed = isClosed(row['i'])
# Generate a unique key for the button
button_key = f"position_{row['i']}"
# Display a button for each trade position
if st.button(
f"{row['symbol']} : Long: {side}, Entry Price: {row['entryPrice']}, "
f"Market Price: {row['markPrice']}, Amount: {row['usdAmount']}, "
f"Leverage: {row['leverage']}, TradeTakenAt: {row['updateTime']}, "
f"lastUpdated: {lastUpdated(row['i'])}, isClosed: {is_closed}",
key=button_key
):
show_position_history(row['i'])
if __name__ == "__main__":
main()