File size: 4,591 Bytes
a1bc39d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eb58cd
 
b7a097d
3eb58cd
9224ffd
 
4ca8440
9224ffd
 
4ca8440
9224ffd
 
4ca8440
17291f6
4ca8440
 
 
 
3eb58cd
 
fd71939
17291f6
3eb58cd
 
 
 
 
 
 
fd71939
 
3eb58cd
a1bc39d
fd71939
f6d72d9
 
 
 
 
 
 
5da4835
9907d16
9224ffd
9907d16
9224ffd
 
 
 
 
5b4db95
9907d16
5b4db95
 
 
 
9224ffd
9907d16
9224ffd
 
 
 
 
5b4db95
9907d16
5b4db95
 
 
9808a5f
9224ffd
9808a5f
9224ffd
 
 
 
 
3eb58cd
9907d16
3eb58cd
 
 
9808a5f
9907d16
9224ffd
 
 
 
 
 
9907d16
 
 
 
 
4ca8440
 
 
 
 
 
 
 
 
 
 
5da4835
e5a45fc
99c33b8
e5a45fc
 
 
 
 
 
 
 
a1bc39d
 
 
8e7188b
bef2a73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def add_file(history, file):
    history = history + [((file.name,), None)]
    return history

def bot(history):
    response = "**That's cool!**"
    history[-1][1] = response
    return history

with gr.Blocks() as demo:

    gr.Markdown("""
    Hey there genius!

    Welcome to our demo! We've trained Meta's Llama on almost 200k data entries in the question/answer format.


    In the future, we are looking to expand our model's capabilities further to assist in a range of IP related tasks.


    If you are interested in using a more powerful model that we have trained, please get in touch!


    As far as data is concerned, you have nothing to worry about! We don't store any of your inputs to use for further training, we're not OpenAI πŸ‘€. We'd just like to know if this is something people would be interested in using! 

    Please note that this is for research purposes and shouldn't be used commercially 

    None of the outputs should be taken as solid legal advice. If you are an inventor looking to patent an invention, always seek the help of a registered patent attorney!!
    
    """)
    
    with gr.Tab("Text Drafter"):
        gr.Markdown(""" 
        You can use this tool to expand your idea using Claim Language.

        Example input: A device to help the visually impaired using proprioception.

        Output: 
        """)
        text_input = gr.Textbox()
        text_output = gr.Textbox()
        text_button = gr.Button("")

        with gr.Row():
            gr.Markdown(""" 
            You can use this tool to expand your idea using Claim Language.
    
            Example input: A device to help the visually impaired using proprioception.
    
            Output: 
            """)            
    
    with gr.Tab("Description Generator"):
        gr.Markdown(""" 
        You can use this tool to turn a claim into a 

        Example input: A device to help the visually impaired using proprioception.

        Output: 
        """)        
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")

    with gr.Tab("Knowledge Graph"):
        gr.Markdown(""" 
        Are you more of a visual type? Use this tool to generate graphical representations of your ideas and how their features interlink.

        Example input: A device to help the visually impaired using proprioception.

        Output: 
        """)
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")

    with gr.Tab("Prosecution Ideator"):
        gr.Markdown(""" 
        Below is our 

        Example input: A device to help the visually impaired using proprioception.

        Output: 
        """)
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")

    with gr.Tab("Claimed Infill"):
        gr.Markdown(""" 
        Below is our 

        Example input: A device to help the visually impaired using proprioception.

        Output: 
        """)
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")


    gr.Markdown(""" 

    Do you want a bit more freedom over the outputs you generate? No worries, you can use a chatbot version of our model below. You can ask it anything by the way, just try to keep it PG.

    If you're concerned about an output from the model, hit the flag button and we will use that information to improve the model.

    

    Output: 
    """)
    
    chatbot = gr.Chatbot([], elem_id="Claimed Assistant").style(height=500)
    with gr.Row():
        with gr.Column(scale=0.85):
            txt = gr.Textbox(
                show_label=False,
                placeholder="Enter text and press enter, or upload an image",
            ).style(container=False)
        with gr.Column(scale=0.15, min_width=0):
            btn = gr.UploadButton("πŸ“", file_types=["image", "video", "audio"])

    txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
        bot, chatbot, chatbot
    )

demo.launch()