Spaces:
Sleeping
Sleeping
File size: 6,449 Bytes
c703bc8 63d9b78 800e1b6 c703bc8 63d9b78 c703bc8 63d9b78 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 800e1b6 c703bc8 63d9b78 c703bc8 800e1b6 c703bc8 63d9b78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# Model documentation & parameters
## Parameters
### Property
The supported properties are:
- `Metal NonMetal Classifier`: Classifying whether a crystal could be metal or nonmetal using a [RandomForest classifier](https://www.nature.com/articles/s41524-022-00850-3)
- `Metal Semiconductor Classifier`: Classifying whether a crystal could be metal or semiconductor using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
- `Poisson Ratio`: Predicted using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
- `Shear Moduli`: Predicted using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
- `Bulk Moduli`: Predicted using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
- `Fermi Energy`: Predicted using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
- `Band Gap`: Predicted using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
- `Absolute Energy`: Predicted using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
- `Formation Energy`: Predicted using the [CGCNN framework](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301).
### Input file for crystal model
The file with information about the metal. Dependent on the property you want to predict, the format of the file differs:
- `Metal NonMetal Classifier`. It requires a single `.csv` file with the metal (chemical formula) in the first column and the crystal system in the second.
- **All others**: Predicted with CGCNN. The input can either be a single `.cif` file (to predict a single metal) or a `.zip` folder which contains multiple `.cif` (for batch prediction)
# Model card - CGCNN
**Model Details**: Eight CGCNN models trained to predict various properties for crystals.
**Developers**: [CGCNN's](https://github.com/txie-93/cgcnn) developers.
**Distributors**: Original authors' code wrapped and distributed by GT4SD Team (2023) from IBM Research.
**Model date**: 2018.
**Algorithm version**: Models trained and distributed by the original authors.
- **Metal Semiconductor Classifier**: Model trained to classify whether a crystal could be metal or semiconductor using instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals..
- **Poisson Ratio**: Model to predict the Poisson ratio trained on 2041 instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals.
- **Shear Moduli**: Model to predict the Shear moduli trained on 2041 instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals. Unit log(GPa).
- **Bulk Moduli**: Model to predict the Bulk moduli trained on 2041 instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals. Unit log(GPa).
- **Fermi Energy**: Model to predict the Fermi energy trained on 28046 instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals. Unit eV.
- **Band Gap**: Model to predict the Band Gap trained on 16458 instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals. Unit eV.
- **Absolute Energy**: Model to predict the Absolute energy trained on 28046 instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals. Unit eV/atom.
- **Formation Energy**: Model to predict the formation energy trained on 28046 instances from this [database](https://aip.scitation.org/doi/10.1063/1.4812323) that includes a diverse set of inorganic crystals ranging from simple metals to complex minerals. Unit eV/atom.
**Model type**: Crystal Graph Convolutional Neural Networks (CGCNN) that take an arbitary crystal structure to predict material properties.
**Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
See the [CGCNN](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301) paper for details.
**Paper or other resource for more information**:
The [CGCNN](https://link.aps.org/doi/10.1103/PhysRevLett.120.145301) paper. See the [source code](https://github.com/txie-93/cgcnn) for details.
**License**: MIT
**Where to send questions or comments about the model**: Open an issue on [CGCNN](https://github.com/txie-93/cgcnn) repo.
**Intended Use. Use cases that were envisioned during development**: Materials research.
**Primary intended uses/users**: Researchers using the model for model comparison or research exploration purposes.
**Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.
**Factors**: N.A.
**Metrics**: N.A.
**Datasets**: Different ones, as described under **Algorithm version**.
**Ethical Considerations**: No specific considerations as no private/personal data is involved. Please consult with the authors in case of questions.
**Caveats and Recommendations**: Please consult with original authors in case of questions.
Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
# Model card - RandomForestMetalClassifier
ToDo...
# Citation
```bib
@article{PhysRevLett.120.145301,
title = {Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties},
author = {Xie, Tian and Grossman, Jeffrey C.},
journal = {Phys. Rev. Lett.},
volume = {120},
issue = {14},
pages = {145301},
numpages = {6},
year = {2018},
month = {Apr},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.120.145301},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.120.145301}
}
``` |