jannisborn commited on
Commit
7eafb33
·
unverified ·
1 Parent(s): ccbdbb4
Files changed (3) hide show
  1. app.py +1 -1
  2. model_cards/article.md +15 -2
  3. model_cards/description.md +3 -20
app.py CHANGED
@@ -59,7 +59,7 @@ if __name__ == "__main__":
59
 
60
  demo = gr.Interface(
61
  fn=run_inference,
62
- title=TITLE,
63
  inputs=[
64
  gr.Dropdown(algos, label="Algorithm version", value="v0"),
65
  gr.Textbox(
 
59
 
60
  demo = gr.Interface(
61
  fn=run_inference,
62
+ title="MoLeR (MOlecule-LEvel Representation)",
63
  inputs=[
64
  gr.Dropdown(algos, label="Algorithm version", value="v0"),
65
  gr.Textbox(
model_cards/article.md CHANGED
@@ -1,4 +1,17 @@
1
- ### Model card - MoLeR
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  **Model Details**: MoLeR is a graph-based molecular generative model that can be conditioned (primed) on scaffolds. The model decorates scaffolds with realistic structural motifs.
4
 
@@ -36,7 +49,7 @@
36
 
37
  **Caveats and Recommendations**: Unclear, please consult with original authors in case of questions.
38
 
39
- Model card prototype inspired by [*Mitchell et al. (2019), Proceedings of the Conference on Fairness, Accountability, and Transparency*](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
40
 
41
  ## Citation
42
 
 
1
+ # Model documentation & parameters
2
+
3
+ **Algorithm Version**: Which model checkpoint to use (trained on different datasets).
4
+
5
+ **Scaffolds**: One or multiple scaffolds (or seed molecules), provided as '.'-separated SMILES. If empty, no scaffolds are used.
6
+
7
+ **Number of samples**: How many samples should be generated (between 1 and 50).
8
+
9
+ **Beam size**: Beam size used in beam search decoding (the higher the slower but better).
10
+
11
+ **Seed**: The random seed used for initialization.
12
+
13
+
14
+ # Model card - MoLeR
15
 
16
  **Model Details**: MoLeR is a graph-based molecular generative model that can be conditioned (primed) on scaffolds. The model decorates scaffolds with realistic structural motifs.
17
 
 
49
 
50
  **Caveats and Recommendations**: Unclear, please consult with original authors in case of questions.
51
 
52
+ Model card prototype inspired by [*Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
53
 
54
  ## Citation
55
 
model_cards/description.md CHANGED
@@ -1,23 +1,6 @@
 
1
 
2
- # MoLeR (MOlecule-LEvel Representation)
3
-
4
- <img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="80" >
5
  This model is provided and distributed by the **GT4SD** (Generative Toolkit for Scientific Discovery).
6
 
7
-
8
- ## Model documentation & parameters
9
-
10
- ### Algorithm Version:
11
- Which model checkpoint to use (trained on different datasets).
12
-
13
- ### Scaffolds
14
- One or multiple scaffolds (or seed molecules), provided as '.'-separated SMILES. If empty, no scaffolds are used.
15
-
16
- ### Number of samples:
17
- How many samples should be generated (between 1 and 50).
18
-
19
- ### Beam size
20
- Beam size used in beam search decoding (the higher the slower but better).
21
-
22
- ### Seed
23
- The random seed used for initialization.
 
1
+ <img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >
2
 
 
 
 
3
  This model is provided and distributed by the **GT4SD** (Generative Toolkit for Scientific Discovery).
4
 
5
+ For **examples** and **documentation** of the model parameters, please see below.
6
+ Moreover, we provide **model cards** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) with details of the model at the bottom of this page.